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REPRESENTATION. MODELING AND RECOGNITION OF OUTDOOR SCENES

Martin A. Fischler and Robert C. Bolles
Principal Investigators

OBJECTI VE:

Our primary goal in this project is to advance the state of the art in scene
interpretation for autonomous systems that operate in natural terrain. In
particular, techniques are being developed for representifg knowledge about
complex cultural and natural environments so that a computer vision system can
successfully plan, navigate, recognize, and manipulate objects and answer
questions or make decisions relevant to this knowledge.

APPROACH:

This work integrates advances in four separate technologies to achieve the
goal of providing a foundation for the design of highly competent machine vision
systems capable of autonomous operation in the outdoor world.

First, stored knowledge (such as map data and object models) provides the basis
for invoking context, function, and purpose, in addition to the use of visually
observed geometric shape, to recognize scene objects.

Second, we are developing compact and expressive representations for modeling,
and ultimately recognizing, objects encountered in the natural world.
Computational efficiency, and thus real time performance, is critically
dependent on using effective representations for both models and sensed data.

Third, global optimization techniques are being developed that require reasonable
amounts of computation, but which are expected to produce results beyond those
obtainable by local analysis methods.

Fourth, techniques are being developed that are able to simultaneously, or
incrementally, exploit multiple views of a scene in compiling a complete scene
model. For example, in our previous work we have been able to demonstrate that
the integrated analysis of a motion sequence can be used to construct a
geometric scene model that is superior to a sequence of independent stereo
reconstructions.

PROGRESS:

This program builds on our previous ARPA research. Our initial results are
centered on the development of representations and associated methods for
rapidly modeling natural terrain (from image sequences) at a level of
organization higher than that of the conventional dense array of depths. This
work will provide the essential advance needed to turn raw geometric
measurements into timely information usable by robotic navigation and planning
systems. Work is also progressing on two additional problems: modeling compact
3-0 objects from their projected 2-D contours, and the problem of recognizing
important classes of natural and man-made objects -- especially roads, trees.
and rocks.

SUMMARY OF RECENT ACCOMPLISHMENTS:

-Developed an approach for integration of information acquired from multiple
vies of a scene into a description of scene geometry. The approach uses a new
class of geometric primitives which allows easy expression of known constraints
and observed data, and also allows the use of practical optimization based
solution techniques. This work will provide an effective way of allowing a
robotic system to incrementally build a progressively more accurate and complete
model of the environment in which it is operating.A paper describing this
work, intended for journal publication, has been completed and is included in
this report as Appendix A.; also see the detailed discussion of this topic
provided in a following section.

-Made a significant new advance in the long-standing problem of duplicating
human performance in recovering 3-0 models of terrain and man-made objects from
qualitative and imprecise line drawings (e.g., of terrain elevations as in an



approximate and uncalibrated contour map. or building edges as in a single
approximate projection of the corresponding wire-frame). This work can greatly
simplify communication problems between man and machine in such applications as
robotic mission planning and in construction of databases for use in robotic
navigation. A paper describing this work has been published in the International
Journal of Computer Vision (XAn optimization based approach to the
interpretation of single line drawings as 3-0 wire frames," IJCV S(2):113-136,
Nov 13); a reprint is enclosed as Appendix B. On-going work has led to (new)
additional results of both theoretical and practical importance; these new
results will be described in a later report.

-The problem of automatically recognizing objects appearing in images of the
outdoor world has proven to be extremely difficult, in part. because in addition
to all the other difficulties of object recognition, we must now also contend
with the lack of explicit shape models. While most of the current (successful)
computer-based recognition approaches rely on explicit knowledge of shape.
rocks, trees, and other natural objects cannot be successfully described in this
may: even such generic man-made objects as roads, bridges, and buildings are
more likely to satisfy functional constraints rather than being exemplars of
some geometric blueprint. In order to replace explicit shape with a more
general way of describing natural objects (and complex man-made structures), a

arge number of geometric primitives have been proposed that are also suitable
for detection by automatic image analysis algorithms (e.g., edges, textures.
fractals). The result of much of this past work is that, while often promising,
the techniques are not sufficiently reliable to provide a basis for the
knowledge-based analysis needed to complete the recognition task. What is
required are a few techniques than can very reliably organize the pixel-level
image data as a basis for higher level ana ysis. Finding the appropriate
combination of low-level data-description, and associated extraction techniques,
is thus a key problem in machine vision and of our primary concerns in this
project. In addition to our work relevant to this topic discussed above, we have
focused on extracting coherent line (as distinct from edge) features in single
gray-level images. We note that a line sketch of some object or scene is often
sufficient to depict the imaged information in a very compact way. Two
techniques have emerged from this work that appear to meet the criterion of
generality and robustness. The first is a generic way to find candidate line
structure in an image; this work will be described in a later report. The
second is a way to organize such data into perceptually coherent and
semantically meaningful units. In Appendix C of this report we describe our
progress in the design of a curve partitioning technique that is extremely
robust in achieving the perceptual organization task; we also describe how this
technique can be applied to the problem of road delineation in aerial images.

DETAILED DISCUSSION OF RECENT WORK ON GEOMETRIC
RECONSTRUCTION FROM MULTIPLE VIEWS:

To reconstruct object surfaces, one can start with a number of measuring
techniques, for example laser rangefinding, stereo or 3D scanners, all of which
provide raw information about the location of points in space. These points,
however, often form potentially noisy "clouds" of data instead of the surfaces
one expects.

Deriving the surfaces from such data is a difficult task because:
-the 30 points may form a very irregular sampling of the space,
-they may have been produced by several sensors or derived from several

viewpoints so that it becomes impossible to work only in the
imaging plane of any one sensor,

-several surfaces can overlap; simple interpolation will not work,
-the sensors and algorithms make mistakes that must be properly dealt with.

In this research effort, we address the problem of determining the 3-D shape and
material properties of surfaces by combining the information provided by active
or passive ranging techniques with that present in multiple 2-D intensity
images. As discussed in our previous reports, we are investigating two different
approaches, the first based on local surfaces and the second on global ones.

At present, most of our efforts have been devoted to the global surface
approach. It relies on hexagonal triangulations that can be deformed to recover
both the geometry and physical properties of surfaces of interest.



Surface Geometry

Von camera models for the images being analyzed, the corresponding projections
the 3-D surface points appearing in the images can be computed and, assuming

a usual stereo assumption, must have comparable grey levels. Our algorithm
itimizes the placement of surface vertices to minimize the overall difference

grea levels while preserving surface smoothness. The actual criterion we use
a I[rnar combination of the sums of the variance of grey levels across images

td of the sums of the surface curvatures at the vertices. We use a
injugate-gradient descent algorithm embedded in a continuation method to
irfore the optimization: we first optimize with a strong smoothness
jnstraint; we then reduce the constraint progressively.

icauee our surfaces are 3-0 objects, we can directly determine the presence of
ýdden surfaces and deal effectively with occlusions. In order to detect those
idden surfaces in an effective manner, we have implemented the algorithm to run
San SGI machine and exploit the machines z-buffering capabilities.

) far, in most of our experiments, we have used regular grids and uniform
moothness constraints. While this is appropriate for surfaces whose properties
imain relatively constant, this is suboptimal for more complex surfaces that
in be more effectively handled using triangulated irregular networks. The
elatively smooth parts of such surfaces should be represented by large patches
,ile the rougher parts are better described by finer and less constrained
-iangulations. We have made progress in implementing such irregular networks
j allowing some of the regular facets to be subdivided as required by the
.uface geometry.

) Physical Properties

any natural surfaces can be modeled by a Lambertian reflectance model whose
Ibedo depends on the corresponding physical surface properties. Recovering
his albedo is therefore an important first step towards the goal of analyzing
hose physical properties and potentially segmenting regions of interest.
nlike traditional "shape from shading" approaches that work in image space and
ssume constant albedo, our technique allows us to assign different albedoes to
he facets of the derived triangulation. We can then optimize the values
ssi gned to these albedoes and also find (or use the known) location of the
ight source to maximize the similarity between the shaded image derived from our
odels and the real images.

e are performing experiments with the above method for computing albedo given
urfaces originally derived using stereo. The objective function we optimize
nforces albedo smoothness while minimizing intensity difference between the
haded images and the real ones. To make this approach fully general, we will
ntroduce albedo discontinuities to account for abrupt changes in surface
aterial type. We will also attempt to determine those classes of natural
bjects and terrain types for which the Lambertian model is appropriate by
xamining the variance in intensity across images of the same scene acquired
rom different viewpoints.

ur ultimate goal in the above two tasks is to be able to optimize
imultaneously the vertex positions and the surface albedoes in order to compute
urface geometry and photometry. Our current focus in this task is to combine
he stereo objective function iith the photometric one in order to achieve a
ore complete description of the scene.

) Implementation and Testing

n the past few months we have refined and tested our method for reconstructing
oth the shape and reflectance properties of physical surfaces from the
nformation present in multiple images. We have, so far, considered two classes
f information. The first class contains the information that can be extracted
ram a single image, such as texture gradients, shading, and occlusion edges.
e take advantage of the fact that multiple images enhance the utility of this
ype of information by allowing for consistency checks across the images as well
re the use of averaging to improve precision. The second class contains
nformation that require at least two images for its extraction, such as the
oepth of corresponding points found in two input images through the use of
torso triangulation.

ur surface reconstruction method uses an object-centered representation,
pecifically, a hexagonally-connected 3-0 mesh of vertices with triangular



facets. Such a representation accommodates the two classes of information
mentioned above, as well as multiple images (including motion sequences of a
rigid object) and self-occlusions. We have chosen to model the surface material
using the Lambertian reflectance model with variable albedo. though
generalizations to specular surfaces are possible. Consequently, the natural
choice for the monocular information source is shading. while intensity is the
natural choice for the image feature used in multi-image correspondence. Not
only are these the natural choices when we are able to assume a Lambertian
reflectance model, they are complementary: intensity correlation is most
accurate wherever the input images are highly textured, and shading is most
accurate when the input images have smooth intensity variation. Since we wish
to deal with surfaces with non-uniform albedo. we have developed a new approach
to incorporating shading information that uses the variation in computed albedo
from facet to facet as the indicator of a correct surface reconstruction.

We use an optimization approach to reconstruct the surface shape and its
material properties from the input images. That is. we alter the shape and
reflectance properties of the surface mesh so as to minimize an objective
function, given an initial surface estimate provided by other means, such as a
standard stereo algorithm. The objective function is a linear combination of
an intensity correlation component, an albedo variation component, and a surface
smoothness component. The first two components are a function of the
intensities projected onto the triangular facets from the input images (taking
occlusions into account), and are weighted according to the amount of texture in
the intensities, for the reasons mentioned in the previous paragraph. The
geometric smoothness component is slowly decreased during the optimization
process to allow for an accurate estimate of the surface shape and reflectance.

We have implemented an algorithm employing these three terms and have performed
extensive experiments using synthetic images as well as real aerial and face
images. The strengths of the approach include:

- The use of the 3-D surface mesh allows us to deal with self-occlusions and thus
effectively merge information from several potentially very different viewpoints
to eliminate "b ind-spots."

-- By combining stereo and shape from shading, and weighing appropriately the
reliability of their respective contributions, we can obtain results that are
better than those produced by either technique alone.

-- Using the facets to perform the stereo computation frees us from the
constant-depth assumption that standard correlation-based stereo techniques
make. It becomes possible to recover accurately the depth of sharply sloping
surfaces (such as that of a sharp ridge).

-- The shape from shading component does not make a constant-albedo assumption
unlike most shading algorithms. Instead, we only make the weaker and much more
general assumption that albedoes vary slowly across textureless areas.
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An Optimiation-Based Approach to the Interpretation of Single Line
Drawings as 3D Wire Frames

YVAN G. LECLERC ANM MAJUIN A. FISCHLER
A it al Inefigence Center, SRI Inernational, 333 Rivenswood Ave., Menlo Park, CA 94025

Rceived

Line drawinp provide an effective means of communication about the geometry of 3D objects. An understand
of how to duplicate the way humans interpret line drawings is extremely important in enabling man-machine com-
munication with respect to images, diagrams, and spatial constructs. In particular, such an understanding could
be used to provide the human with the capability to create a line-drawing sketch of a polyhedral object that the
machine can automatically convert into the intended 3D model.

A recently published paper (Marill 1991) presented a simple optimization procedure supposedly able to duplicate
human judgment in recovering the 3D "wire frame" geometry of objects depicted in line drawings. Marill pro-
vided some impressive examples, but no theoretical justification for his approach. Here, we introduce our own
work by first critically examining Marill's algorithm. V& provide an explanation for why Marill's algorithm was
able to perform as well as it did on the examples he presented, discuss its weaknesses, and show very simple
examples where it fails. Ve then provide an algorithm that improves on Marill's results. In particular, we show
that an effective objective function must favor both symmetry and planarity-Marill deals only with the symmetry
issue. By modifying Marill's objective function to explicitly favor planar-faced solutions, and by using a more
competent optimization technique,- we were able to demonstrate significantly improved performance in all of the
examples Marill provided and those additional ones we constructed ourselves. Finally, we examine some questions
relevant to the implications of this work for understanding the human ability to interpret line drawings.

1 Jairedm on develop an algorithmic procedure that could duplicate
human performance in interpreting line drawings, at

The interpretation of line drawings has been an impor- least with respect to blocks world objects. A signifi-
tant focus for research in machine vision since the cant body of work in this area was produced by such
field's inception. There seems to be little question that prominent scientists as Clowes (1971), Huffman (1971),
human subjects can easily recover 3D models from 2D Waltz (1972), Mackworth (1973), Kanade (1980), Draper
line drawings depicting many classes of objects. One (1981), and Sugihara (1982, 1984). However, the prob-
such class of special interest has been called the "blocks lem as originally formulated, devising a procedure for
world.' This class consists primarily of polyhedral recovering psychologically plausible 3D models from
solids in 3D Euclidean space and the projections of the line drawings, remains unsolved. (A psychologically
visible edges of these objects onto a 2D plane (which plausible reconstruction of a line drawing is the one
we call the line drawing). Given a single line drawing that virtually all people will accept.)
of a blocks world scene, normal human subjects will The earliest work by Guzman was heuristic in
usually arrive at the same 3D interpretation, even nature, failed in many cases where humans had no trou-
though there may be a very large number of possible ble in finding appropriate interpretations, and did not
3D objects that could have produced the given drawing. actually return a 3D model, but rather partitioned the

Beginning with the work of Guzman in 1968, there scene into separate polyhedral objects. Clowes, Huff-
has been a concerted effort by vision researchers to man, Waltz, Mackworth, and Kanade formalized and
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andmed the work of Guzman, but did not solve the through I, shows the line drawings used in Marill's ex-
migiml problem. They were (usually) able to label the periments.) However, his paper provided no justifica-
edges of the line drawing to correctly reflect a consis- tion for why the algorithm should work, and thus no i
het 3D inturpretation if one existed, or could assert basis for judging its generality or insight into how it
that the drawing did not correspond to a realizable could be improved (should this be desirable).
blocks world scene. Mackworth and Kanade explicitly The first refrence we have found that presents the
exploited the planarity of the faces of blocks world and case for choosing between various interpretations of a
"Origami" objects (by employing a "gradient space" line drawing based on an objective function is Hochbe•g
rqiresez o) to accomplish a form of semiquantitative and McAlister (1953). In their paper, they "showed that:
recovery. In addition to consistent edge labeling, they (1) some variants of the Necker cube are more likely
coid also constrain the relative orientation of the fces to be described as 2D figures, and some are more likely
of the target 3D model. The labels could describe the to be described as 3D; and (2) these differences could I
edges as being convex, concave, occluding, and so be predicted by an objective and plausible coding
forth, but still. for the general case, no explicit 3D scheme. Within this scheme, the economy of descrip-
model was returned (without introducing additional tion was assessed by (among other measures) the i
Monstraints) and the algorithms would make occasional number of lines and angles contained within the coding.
errors.I Thus, the costs and benefits of 2- versus 3-D intrpret-

In a series of papers, Sugihara reformulated the tions could be assessed. Figures that could be coded 3
realizability and recovery problems for line drawings more simply under a depth intretation were, in fact,
of polyhedra (both with and without hidden lines re- seen in depth; those that could not be simplified in this
moved) in purely algebraic terms. He required as in- way were seen to lie in the picture plane" (Pomerantz i
put a specification of the vertexes defining each of the & Kubovy 1981, pp. 439-440).
individual planar faces of the polyhedra, and also re- Barrow and Tenenbaum (1981) suggested ideas
quired that the implied line drawing be a general- similar to Marill's for interpreting line drawings (both
position projection othe polyhedr. With this approach for simple closed curves and polyhedra), but did not i
be succeeded in providing an algebraic criterion as a pursue the ideas in greater depth. More recently, Bar-
necessary and sufficient condition for a line drawing nard and Pentland (1983) and Pentland and Kuo (1990)
to represent a physically realizable polyhedral object. have pursued Barrow and Tenenbaum's approach for
He could also constrain the space of feasible solutions, simple curves and line drawings of surfaces by finding
and obtain a unique solution if enough additional con- the smoothest curve (or surface) corresponding to the
stMaints were provided. These additional constraints line drawing.
were obtained from information beyond that provided In this article we introduce our own work by first
by the line drawing (e.g., shading or texture informa- critically examining Marill's algorithm. Vk provide an
dion). Sugilhra's work was an important advance, but explanation for why Marill's algorithm was able to per-
again it fell short of the original goal. It will rarely be form as well as it did on the examples he presented,
the case that a unique reconstruction is implied by the discuss its weaknesses, and show very simple examples
line drawing, and thus the primary objective of duplicat- where it fails (figure 1, examples J through N). Ve then
iag human performance in this regard is not met.2  provide an algorithm that improves on Marill's results

Our motivation for writing this article was supplied, for all nine of his examples, and also successfully deals 3
in part, by a recent publication authored by T. Marill with the simple cases where Marill fails. Finally, we -U
r1991). He refocused on the original problem of human examine some questions relevant to the implications of
interpretation of single line drawings as 3D structures; this work for understanding the human ability to inter-
ke did not restrict his universe to blocks world objects pret line drawings.
oor did he demand that the line drawings be complete. We see the work described here as being of both
Mhe surprising thing about his work was that he used theoretical and practical interest. The practical utility
m optimization approach involving (seemingly) an of this work is its relevance to man-machine commun- I
dmost trivial objective function, and the simplest ication about 3D structures via line drawings-in par-
possible descent algorithm to find a solution, and yet ticular, providing the human with the capability to
povided examples of reconstructed objects that were, create a fine-drawing sketch of a polyhedral object that
intuitively, extremely good. (Figure 1, examples A the machine can automatically convert into the intended I
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R9g. L The line drawings examined in this article. Examples A through I are taken from Marill's paper. Examples J through N are line drawings
introduced here for which Marils' algorithm failed to recover a phychologically plausible 3D model. Example 0 is a line drawing for which
a psyhologically plausible 3D model is not feasible.

3D model. Deficiencies in providing a complete theory object with respect to their common mean. Mariln calls
are not ftal, since auxiliary information can always be the minimization of the SDA the MSDA principle.
supplied interactively to resolve ambiguities, but the The input line drawing is specified as a set of points
underlying theory should reduce this "side communica- (vertexes) and lines; each point is represented by an
tion" to a minimum. (x, y) coordinate pair, and each line is represented by an

integer pair corresponding to the sequence numbers of
2 Marll's MSDA Algorithm the two points it joins. The representation of the recov-

ered 3D object involves supplying a third (z) coordinate
Marill's algorithm consists of two components, an ob- for each of the originally specified points. This is what
jective function and a simple descent optimization pro- we call the orthographic extension of the line drawing. 3

cedure for finding a local minimum of this objective It is actually a wire frame rather than a solid object.
fimction. 1The objective function is simply the standard Tb evaluate the objective function for a given pro.
deviation of all of the angles (SDA) in the recovered 3D posed solution, every pair of lines terminating on a
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point (as defined in the input specification) is con- tation of the input line drawing. In the first row are the
sidered to form a separate angle. Thus, if five lines ter- (x, y) coordinates of the vertexes, in the order shown
minate on the same point, every potential 3D solution on the drawing.4 In the second row are the integer i
contains ten angles at this point that contribute to the pairs representing the lines in the drawing. In the third
objective function. Note that the intersection, between row are the sequences of vertexes corresponding to the
two lines that happen to cross at intermediate points planar faces derived according to the rules of appen- "
of their extent in the line drawing, is not treated as a dix A (see section 3). The reconstructions are discussed
vertex, and does not contribute to the objective func- in section 3.3.
tion (even if the lines were to lie in the same plane i-
the 3D reconsutuction). Similarly, two distinct vertexes
can have the same (x, y) coordinates in the line draw- 2.1 Marill's Eampnles
ing, but then the line segments terminating on the
distinct vertexes do not interact to form angles (even Marill described the application of his algorithm to ex-

if the vertexes coincide in the 3D reconstruction). amples A through I of figure 1. We categorize these
Thus, given a line drawing with n vertexes, each examples along the following dimensions (based on the I

possible orthographic extension is represented as a z appearance of the input drawing and on the character-
vector having n components; the corresponding angles istics of the recovered 3D object):
and SDA are computed to evaluate the proposed solu- a. -Three-dimensional [A B D E F G H I] I
tion. Marill uses a descent technique to search for a -Flat [C]
best answer, recognizing that this is simply a heuristic b. -Blocks world (planar-faced solids with occluded
and that this approach will find only a single local edges not rendered) [B H I] I
minimum of his objective function. The input object -Origami (planar-faced, possibly hollow) [C F]
has all of its z values initially set to zero; that is, it is -Wire frame of blocks world object (all edges of
a flat object lying in the (x, y) plane. At each stage in a blocks world object are given, and additional 3
the search, the SDA of the current z vector is computed lines between vertexes of a planar face may be
and the program then looks at the children of the cur- added) [A D GI
rent vector. These 2n children are all of the vectors one -Restricted wire frame (every closed circuit of •
step size away from the current vector, and are formed lines, without interior lines in the given input
by both adding and subtracting a specified value (Az) representation, corresponds to a planar face) [E]
to each of the n components in the current z vector. -Nonplanar wire frame (none of the above) 3
The value of the SDA is computed for each of these c. -Symmetric [A B C E G H]
2n children, and the child with the minimum SDA is -Asymmetric [D F I]
selected as the new current vector. This process is d. -All angles (approximately) equal [A B E F H]
repeated until no improvement in the SDA is obtained, -A fi-w distinct but mostly repeated angles (C G I]
and the resulting z vecto is returned as the solution -Mostly unequal angles [D]
for the first of three rounds of descent. Each additional
round uses a smaller Az and begins with the result of For the purposes of our discussion, we use Marill's -
the preceding round. Marill experimentally found ef- categorization and augment it with our own subjective
fective values of Az for his three rounds to be 1, 0.5, evaluation where we disagree or need to add additional
and 0.1. attributes to those Marill provides. It is important to "

Figure 2 shows a line drawing, its internal represen- remember that Marill always returns a wire frame as
taton as described above, and the reconstructions us- his solution, regardless of the categorization of the ob-
ing Marill's algorithm and the algorithm we describe ject. Thus, we would call the wire frame of a blocks
in section 3. world object a correct solution if it was a geometric-

In the top left window of the figure is the input line ally correct representation of the 3D geometry of the
drawing (with the vertexes numbered for reference by edges of the psychologically plausible blocks world ob-
the written representation below). The four windows ject whose orthographic projection corresponded to the
on the top right show two views of Marill's reconstruc- input line drawing, even though the wire frame does
tiun and two views of our reconstruction. In the mid- not provide an explicit represunkation of the grouping
die of the figure is a table showing the internal represen- of lines into faces, and so forth. I
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I 10 it

'' 9_ __7_

N3 0 Mariu's Reconstruction

Hexagonal Prism
Example__ _ J__

Our Reconstruction

Fae (0176)128 7)2 39 8)3 410 9)4 511 10)5 0611)0 12 3 4 ( 7 8 91011)

______ ____________ Ange (Mean / ag) SDAI DP

Onisinal 0.00 0.10 0.87 1.53 1.43 0.66 1.0oto4.10000623 .000Object -2.23 -2.12.-1.38 -0.69 -0.80 -1.57 90.0to 20.
Mai' 0.00 0.46 -2.15 -1.48 -2.19 0.72 1.0 to 3.4 8..1600041

Reconstruction -0.37 0.33 -2.61 -1.92 -2.36 0.31 _____ 47.5 to 111.2 0.160 .470

out 0.00 0.12 0.96 1.66 1.55 0.71 1.0 to 3.10 000 12 9 .0 0 0I3 ~ ~ ~~~ Reconstruction 1-1.99 -1.87 -1.04 -0.35 -0.47 -1.31 1ejctn - c3 wire fto m o1e22.6hi aste bec

a regular hexagngom prism. Akhough arbitrary line drawings can be used as input to the reconstruction algoriduns described in this aricle
(ihScnor lesr ucess in feooatruction), ali fd xnlsitoue eeWr isldb trigwt pcfc3 bet.M
paesmteupper right Whwtwo views of the object reosrce yMaWWhs a~lgrthm. Tefrtvwi fd betrae bu h

vetclai by 30 de eS, and the second is of the object reined about the horiznotal axis by 90 degree. The two panels in the lower right
sotoviews of the object reconstructed by our algocithm. Mwtabe thiw ds is the iaenwiW representation of the line drawingusdb

the reconstruction algrithms. Noetaft inst bnections sodi as thos between lines (1 7) and (2 3) are not represenied. Marill's algorithmn uses
only the first: two cotuponemt of this representation. The thW coinponent (hces) is derived firom the line drawing using the algorithm de-I- ~scribed in section 3. 1. The table at the banana shws the results of fth recontructions in written form.

Examiples A, B, E, F, and H can all be visualized as 2.2 The Performance of the MSDA Principk
approINimately equiangular three-dimensional objects.I.That is each of dhe olbjecits has an equiangular 3D wire Given its overall simplicity, it wovuld be quite remnark-
frame as a psychiologically plausible solution. Since able if the MSDA principle generally converged to aI theseW equiangular solutions exactly satisf Marill's psychologically plausible reconstruction. Unfortuately,
mninimium standard deviation of angles (MSDA) criter- it is rather easy to find examples where this is not the
km, it is obvious why Marills objecd-ve function should case, contrar to Marill's implied competence for theI prehr what we accept as fth correct soluitions in these principle.
caes. In dhe other fmu cases, supposedly representatie Examples J through N of figure I are line drawings
examples of the ability of Mauil's ajgorithim ID deal with for which M~arils algoridi converged to solutions thatU complicated structures having unequal angles, reason- are clearly psychologically implausible, even thouigh
ably correct solutions are also recovered, and it is this these drawings are not significantly more complicated

Perlrmnc we wish to understand. or more asymmetric tha the examples that Marill used
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4

3 5

0~0

Maul's Reconstruction
2

II
HxagOnAl Plate

Our Reconstruction3

II Points I 1(0.96 -0.27) (0.24 40.89) (-0.72 -0.61) (-0.96 0.27) (4.24 0.89) (0.72 0.61) II
Lin I (s1) ( 1•2 3 4) (4 5) (5 0) 11

osas 10012345)

Za 1mgdw A&Munsanp SD DP
OHObWct 0.00 0.32 0.24 -0.15 -0.48 -0.40 1.0 to 1.0 120.0 0.000000 0.000000

_______________ ____ 120.0 to 120.0 00000 .000M&TWis 110.2

Reaontmction 0.00 0.22-0.12 0.00 0.22-0.12 0.9 to 1.1 116.2 to 116.2 0.000000 0.030363

our 0.00 0.34 0.28 40.11 -0.43 -0.38 1.0 to 1.0' 120.0. 0.000029 0.000000
Recostruction ______________119.6 to 120.4 1________

Fig. I Raqmpe K. 5
(figures 2, 3, 4, 5, and 6 illustrate both Marill's MSDA for line drawings depicting objects that are not 5
reconstuons and our reonsuctions, as described equiangular.
in section 3). In Examples J and K it would appear that
the fault could lie with Marill's use of a descent 2.3 Emluadng the Performance of the MSDA Prindple
algorithm because the SDA of the psychologically
pla•sible answer is less than or equal to the SDA for It is not immediately obvious why the MSDA principle
the solution Marill actually obtains. Thus, one can should pref a psychologically plausible answer if the .3
argue that a more competent global search strategy object depicted in the line drawing contains tw or more
could hoa found the psychologically plausible answer significantly different angles (e.g., C, D, G, I, and 3).
using the same objective function. However, Examples Marill offers no explanation for this phenomenon, and
L, M, and N are line drawings for which the SDA of thus no way to judge the conditions under which his
Marill's solution is significantly lower than that of the algorithm should be expected to succeed or fai. In this
psychologically plausible solution. Thus, the MSDA section we provide a partial explanation for cases (such

principleis clearly not adequate to reliaby handle even as C, G, J, K, and L) that have critically important
line drawinp. attributes-the psychoogicQy plausible reconstruction

Belbe discussing ways of augmenting the MSDA is a 3D planar-faced object whose faces are either
principle to obtain a more competent principle and equiangular or form "complete-star" configurations
Algorithm, we mpt to explain the performance of (see appendix B). I
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0 4 Q 10

Manill's Recoatuction

I MiasmalPlasm

Our Reconstuction

1)(-0.02 -0.95) (-0.82-0.41) (-0.490.71) IM.5 F.M (3.96-07)I"MU I(.-M• (2.28.0.61) 2•.04 0.27) (2.760.o89) (3.72 0.61)
S301) (3 4) (4 2) (5 3) (6 7) (7 8) (8 9) (9 10) (10 5)I IIm 01234 5678910)

____________ Anga (Mean [Rne) - SD-7 DP

0.00 0.29 0.94 1.06 0.47 0.47 1.0 to 1.2 114.5 0.010876 0.000000
0.15 0.23 0.63 0.95 0.87 108.0 to 120.0

mo'rs 0.00 0.30 0.93 1.04 0.46 0.00 0.9 to 1.2 108.0 0.000005 0.165552
,muiiauctm 0.31 -0.24 0.00 -0.31 0.24 107.7 to 108.2

our 0.00 0.00 0.00 0.00 0.00 0.08 1.0 to 1.2 114.5 0.018157 0.000000
Rammisaatm 0.41 0.35 -0.04 -0.36 -0.30 97.9 to 120.4

ft. A Exanple L. Nome that MwIlm's umccepobIe recommruction ha an SDA that is significuly lower than tha of the pycbolgicafly
pausible or*ia objet. Thus, dte MSDA princil ite lf has faild in this instmnce.

To establish the role played by the above geometric equiangular or form complete-star configurations).
attributes,wedefe theplanarorthographiccentsion Consequently, if there were some way to consider
of a simple closed 2D civcuk in a line drawing to be as possible solutions only the planar orthographic ex-
any orthographic extension for which the correspod- tensions cia line drawing (such as the psychologically
ing 3D contour is planar. If a line drawing contains plausible solutions for examples A, B, C, G, J, K, and
more than one simple closed 2D circuit, then a planar L), these solutions would be global minima of the SDA
orhographic eunsion of the endre line drawing ex- because of the angular symmetry they exhibit. We show
its if we can cover the line drawing with a set of sim- in example L that Marill's algorithm is not constrained
ple closed 2D circuits such that (a) every angle in the to search only for planar solutions; while it will also
drawing is included in at least one circuit, and (b) each find solutions with nonplanar faces that have lower
circuit projects to a 3D planar contour.5  SDAs then the planar solutions, there is stl the

In appendixes B, C, and D, we provide a number possibility that MSDA shows at least a weak inherent
of theorems that are pertinent to understanding the ef- preference for planarity, While we cannot completely
fectiveness of the MSDA principle applied to planar rule out this possibility, it appears that the geometric
orthographic extensions. The main theorem, appendix constramts inherent in the specific examples Marill
D, asserts that solutions with certain symmetries cor- selected, rather than MSDA itself, are largely respon-
respond to the global minimum of the SDA over all sible for finding planar-faced solutions. Specifically,
planar orth aphic extensions (the specific symmetry triangles in the line drawing will aluys produce planar
condition we examine is that all faces must either be fac in the orthogaph extension, and as we prove
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9 a
/PA3

7 2

)5 Maril's Reco~utzuction
I -!

Example Mi

I (0.3)(.510U020 O , Reconstruction

R Poin ( -0.05) (0.80 -0.05) (0.99 0.38) (0.86 0.81) (0.4081) (..18 0.19) (0-45 0.19)
Lion 011 3 4) 4 ?J( )ý§7 7 ý!' 95 05 119( 7)3 4

(c 0 0594)(105 G2 16 7) 2 8 4 0 59X 4389 0123 568I

6QOr 0.00 0.77 0.610.06-0.32 0.28 0. o1096.0 0.7210000
Object 1.04 0.88 0.34 -0.04 90.0 to 135. 0.071281 0.000000
Marill's 0.00 0.68 0.67 -0.17 -0.37 0.31 .095.4 0047822 000489

Recomtructiou 0.97 0.93 0.18 0.01 0.4 73.5 to 125.0 0.04_82 0.0048]97

Our 0.00 0.57 0.49 0.10 -0.20 0.37 0.432. 1.0 9 2.0 I
Reconstruction 0.94 0.86 0.46 0.1 0.4 to 1.0 80.7 to 132.2 0.059M77 0.000000

Fa. S Empie M. Ncs he our ucaunhrutom t ha a digh, y lower SDA dm dthat of rie oia object, ludicaft the jPar P of our
alprihm fr eqlapar h i
in appendix X~ a closed four-sided polygonal space graphic extension for this line drawing. However,
curve with 90-degree an at each vertex will always because the input line drawing is a comple;ly con-
be a plawr configuration. Since in Marill's examples nected set of •angular faces, all solutions are con-
listd above, all the faces sadi* these two geometric strained Io have plan facem. Thus, a lare range of
conditions, we see why both dhe desired pharity and psychologically plausible objects is accessible to any
symmetry are presen in the computed solutions.6 reasonable algorithm.

Marill offer only two eamples (D and I) that are In summary, there is an undetandab reason why
not clear instances of the above analysis (all angles Marill's MSDA principle will sometimes tend to select
equal, or symmetric planar faces). His solution for ez- planar symmetric 3D wire frames when a purely equi-
ample I is at least questionable since it does not recover angular solution is not possible. But we also see that
the wire frame of a polyhedral solid (our algorithm MSDA will make unacceptable errors, even in simple
finds such a solution; there is a further discussion of cases, because it is not constrained to prefer solutions
this subject in sections 3.3 and 4). However, this solu- with planar faces unless the geometry of the line draw-
don has almost all of its angles equal wo 90 degrees, ing itself forces planarity.
and so it needs no further axplanation if we accept it
as correct.

M•rill's solution to the asymmetric drawing of ex- 3 Our Paa-it Emkfdng MSf4 Alutb n
ample D ookx very reasonable; it has all its allgles fair-
ly w•ll distributed between 40 and 70 degrees, and we What's missing in the MSDA principle is a means for
hba not found a more symmetric (equiangular) ortho- enfaing the planarity of specified faces. There are two l
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Li._____(0_)___2___ ______5__5_____ O

1 4

1'- 2
MMaiUl's Recowtrutia

I Hinge
Example N

OOu Rewauvictim

IIPoints 1 (-0.58 0.24) (.96 1.36) (1.50 1.04) (-0.02 -0.08) (0.30 2.89) (0.8 2M1)

i n s 0 1 1 2 3) 3 6 6 4 4 0

aceth 012 0463Ma /RV)S 3 D

Orsnl 0.00 0.64 -0.12 -0.77 -0.47 -1.24 1.0 to 2.8 75.007 UU M GAOU
Object _____________ 46.0 1.9D.0

Maifs 0.00 1.21 -1.17 -0.41 -1.18 1.26 2.0 to 3.3 6331felu S 0.132M
Reconstruction ____________ ___ 62.7 to 61.0R tio n 0.00 1.93 1.69-0.21-2.21-2.40 0.7to3.6 8 91.8 OM.O0I MO.0M0

6. xample N. The SDA of Mma1's maccepumble mtmmuctIm is againiicany m w than that of the pqcholg punibleI oaigim object.

parts to this problem: (1) finding those fces in the line Those circuits that are either: (1) completely empty of
drawing that should be planar in the 3D reconstuc- both lines and vertexes (such as the faces of example
tion, (2) and enkring the planarity of these fMces dur- B); or (2) both cov (in the line drawing) and fre
ing, or at least by the end of, the optimiatio process. of internal circuits (such as all the faces of example 1)

am considered to be planar faces of the wire frame;
call this initialset (P0 . A circuit is defined to be an in-

u1 FLnin Planar Faces ternal circuit to a convex circuit if: (1) all of its vertexes
lie within the convex circuit; and (2) it terminates in

The following algorithm for finding the planar faces two nonadjacent vertexes of the convex circuit.
is baed on a set of pqchological presented Added to 6(0 are those circuits, defined by the
in appendix A. The reqirements of items 3, 4, and following algorithm, that are not subsets of any circuit
5 from appendix A have been composed into the follow- in iPo. First, all triples of consecutive lines such that
ing algorithm. (in the following discussion, we define the first and third lines are parallel are found (the two
a face in the line drawing to be a sequence of vertexes.) planar faces of example N fall into this category, as do

First, all simple (nomelf-inersectig) closed circuits the "table legs" of example E). Then, if possible, each
containing more than three lines are found. (WTiangles triple of lines is extended with additional consecutive
are necessarily planar, so they need not be considered.) lines such that all even-numbered lines are parallel to

I m mm | |I
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each other and all odd-numbered lines are parallel to Note that minimizing E(X) favors planar faces, but
each other. An enample of a closed circuit found this strict planarity is not necessarily assured. This is not
wa is the side of the staircase facing the viewer in ex- quite what we would like in the ideal case. Ideally, we
ample H; the side of the staircase opposite the viewer wmld like to find the orthographic extenion of the line
is an eample of an open circuit found using this same drawing with the lowest SDA that has exactly planar
rule. faces (i.e., for which DP = 0).9 To achieve this, we

Finally, pains of prallel lines lie on planar faces in use a continuation method (Leclerc 1989; Watkin et al
genMl position, so the fbur veroms of the Pair of lines 1987), which is a sequence of descent steps applied to
are defined to form a planar face (whether or not the EQX), for decreasing values of X. The sequence begins
vermes ar counected by lines in the line drawing). with the initial condition that Marill suggests (z = 0
If the pair of lines are not already a subset of apre- for all points) and with some initial X0 s 1. Then, X
vionaly foMd planar face, these are added to (P0 .7 is decreased by a given amount and the descent algo-

The Abon procedure is remarkably robust in deai rith is appled anew, saing at the solton imd for
with unconstrained line dmwings. or exnaple, we hve the previous value of X. This is repeated until X is suf-
yet to find a case where this procedure proposes a ficiently close to zero so that no additional changes oc-
psychologically implausible planar face (it even found cur with furh reductions in X.
faces in our test cases that we had not originally recog- Why not simply start with X close to zero in the first
abed as being planar--nch as the back side of tbe stair- place? The reason is that when X is sufficiently closecaew in eamnple H). However, it will sometimes miss to zero, the local minima of E() are determined only
finding a concave planar face leaving the 3D model by the planarity component. Thus, simply starting with
ndrconsained, and this can result in the reconsmt- X close to zero would not allow us to find solutions with

tion of a psychologically implausible 3D wire frame. low SDAs (in fact, when X = A, the original line draw-
If we know that the line-drawings to be processed are ing, which is planar, is a local minimum of E(X)).
restricled to the projections of blc world objects with Although we cannot affect the shape of E) when
all planar intersections included in the drawing (i.e., is small, we can choose the starting point for the des-
no hidden lines removed), then we can be assured that cent algorithm. Tahus, the purpose of the continuationnontfacesraremmissingsytho pitting sfmehdetailsnhere)
no fces art missing by (omitting sme details her) method is to choose a sequence of starting points thatfpa e firt strong influenced by the SDA term, but which a
lines' edges from the drawing that are assigned to two eventlly become dominated by the DP term. Twhe
faces, and then repeating this whole process on the e
reduced line drawing until all the edges have been methodis not guaranteed to find a global minimum of
assige to exactly two fhce (there are some special- the objective function, but has yielded excellent answers

position coAfiguraion in which three or more faces for all the examples discussed in this paper.

have a single edge in common that we presently do not % define the deviation fom planarity term, DP,
deal with). For this more consmtrained universe of line- as the sum of terms DPI, where DPi is zero when face
drawings where we correctly and completely identify f, is planar, and increase as the face deviates from
all the planar faces, we have yet to encounter a caw planarity. We have found two useful definitions of the
where our algorithm produces a psychologically im- DP1 . The first is a strong planarity term that will not
plausible 3D model. allow a face to fold from one planar configuration to

another planar configuration, but applies only to con- 3
vex faces. lb see how a face can fold from one planar

.•2 E,&fbw ~n as configuration to another one within the context of the
The second requirement, n ig planarity, is accooptimization we are performing, consider a line draw- IThesecnd , plnarty isaccm- ing of a square. When all of the z values of the vetee
plished by adding a term to the objective function that ioar suer t he n ai l B t the z values oft e

is zro hen ll he esigate plaar cesare ctully are zero, the fatce is planar. By letting the z values of
is zero when all die des ina planar faces are actually the first and third vertexes become arbitrarily large, the

planar, and increas in valueaste faces deviate from face "folds" into a configuration that, in the limit, is
ltiy (M)llthis term combinatio o jthe also planar. In order to detect and avoid this folding

eione (sa linear combination of the previously whenever possible, we define DP1 to be the following
defined SDA term and the new DP term.s function (DPI) whenever facefi is convex in the line

E(X) - &DA2 + (I - X)DP drawing (DPI is based on item 6 in appendix B): I
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Let xbe the number ofhsdes in die 6ce andlajbe pointalwauyshas z - 0, and the second coordinaft isIthe single at the J*venex. Then, asspoive(this normalization procedure has no

DPI- [( -2)i V* also applied our algorithm so examples A
J through I from Marili's paper. Since his algorithm pro-

A webt essue o plaariy. D2. ppliabl to duced approximately planair-bcd soluinsa by itself in
wal ers isbndaon re observatinaui aty the, appliable al ca bu exml , isn't surprising that our

aldesine bypind ofonothe f o peratirsofln e tht shoruls algorith produced soutfions, almost identical to his.
He i th sae diecton this isanaogou totheno- The grea-test@ deviation from his result was for example

lieon oftore o - o di crvetio (ti1~a~~ o , b~ecause Marill's algorithm recoivored a significantly
don~m flac fouro die aetms curve) of_ th int

DF2- In all of the examples, the An. we used for Mauill's
(4 x4+ 2 algorithm (both as a stand-alone algorithm and within

,,j~ I~ the conitinuation meithod) were 0.125, 0.M2, 003125,J 4-1 x0 1; XIJ+0. 5, amIdOO7.Vkused a m~eriztigalAtthom Marifl
where ;~ is thej* line of plmanr hoof, andj - 1 and suggests because the large one oflen bread the algo-
j + 1 rder to the provious and next lines in the hce, rithm out ofthe valley ofattraction ofthe current localI respectively (i~e., the subscripts are taken modulo the minimumn. Decreasing Az by a hew orf two generally
number of lines in the bce). allowed the algorithm to raninthdorest nn~umer ofimer-

The combined DP term is the sum of: (1) the sum ations. Using a smaller final Az allwed the algorithmn
of DAI over sal convex hcem and (2) the -u of DP2 to produce significantly moire accurate solutions. In theIFI l ocnvxh iie by t menumber of wn n~ation method, X was started at 0.25, and was

ISaIple J (figure 2) illustrafts Marills reconsitruc-
tion it a line drawing ofia rectangular hexagomal. prism.

.13 Reasul This yensruto not only appearspscooial
implausibefom these two views, but, as we discuss in

Fiues. 2 through 6 illustrate the results of ourplanaay die M~lowin section, the reconstructed objecit does notI eunowcing M1511 algorithm, and allows one to compare appear rigid when rotaled Jin real time. It would appear
themswith both Marill's recomutniations and the original that at least part of the reason for this result is that the
3D objects that were used to generate the line draw- recovered bce are clearly nonpianar:, as shown by theI ~igu The "original 3D objects" presented in our figures value of DP in the tabe. The reconstruction obtained
are the pscolgcal plausible solutions that we ex- by using the planarity enbircing MSfl4 algorithm is
pact theI prgram to recover. Vk started with actual 3D almost identical to the original heitagonal prism.
wire frMesn , rathe-r than arbitrary line drawings as an In example K, we see that the MSDA principle isI.experimental expedienat, since most random line draw- abgos o upeln mm.M wsrcn
ings will not induce the perception of a 3D configure- struction takes; the line drawing ofia planar hexagonal
don in human subjects. plate (51)4 -0.0O) and reconstructs a nonplana object,

M rrecnstruction.i are illustrated both graphically also with SDA - OAt By enforing planarity, howeve,I (as two views in the upper third of each figure) and our rep-Constuto is quite Close to the origina heX-
in tabular form in the lower thir. The first column of a1gona111 Plate.I the table lists the z coordinates of each object, the sec- In examples L and N, we see further evidence that
ond column is the range of lengths of the lines of each the MSII4 principle by itelf is inadequate it eme soin-
object, the third column is the mean and rang of the pie line drawings. In both examples, Marill's recon-I anglesformed by all line pairs meeting at a common struction has a significatl lower SDA than the original
vertex, the fourth column is the standard deviation of object, and we consider both of thesexereonstructions;
angles (SDA) of each object, and the fifth column is to be psychologically implausible. Our rcntutoIthe deviation from planarity (DP) of each object. To of example L is quinte close to the original object,
simplfy the comparison of the results, the recovered modulo an additive constant and flip ci the z coordinates

z coordinates have been normalized so thaet the first of the second object (which is invisible to the objective
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Ibmeda). Dzupl N is a hiirly ambiguous figure, and U Subdliy and Robuwgne of the Piwurity Eqorc-
our. frPced a "hinge" with all angles ing MSDA Algoriaun
cdos to 90 depres (the original object had a "hinge-
angle" o45 degrm). Because ofthe ambiguity of the We have eamwined the stability and robustness of our
figwue, dte cists a bmily of rc1rtuntion that we algorithm in tw ways. The first was to taminme the I
conmidr psycho icl e i ours, behavior of the algorithm applied to diffrent projec. -

Emple M shows the i in a figure for tions of the same 3D objects, but always using the same
which some of the plana fites ar nt equiangular initial conditions for the optimization, namely z - 0 i
Again, because some of the hces had more than four for all verews. The second wa to eamnine the behavior
aides, Marr's algorithm hiled to recow a psycho- of the algorithm for diffent initial conditions.
logically plausile object. Our rxv, nsucon is reason- V& ran the planarity enfrcing MSDA algorithm on
ably ood, but it did adjuW t the right angles in dte large at least 32 andnly chosen projectido fthe 3D objectshoe by as much as 13 degrees in orar I make the used to ir Pthe line dmwingsfmmples A throuh
angles in dthfatce closer to being equal. Nonetheless, N. 0 Ir virtually every projection of each of these ob-
we rthe reconstruction to be psychologically jects, the algoithm reconstructed the object as well as

plauuible.it did for the original projetion. For example, figure 7

ft" 7 Nin proecion cdie boxegon prilm, and our €emesgodi rcns°aumtion.7m" proecton used as °orgi line dr are a

tA -a in dw lowe Jef-hood corne ofmc s~o& op of Amr. Ile ofigsi fine drATA is ane by: (1) tde projeion number; (2) the letter
$3 ahm daw Ipmmlom fico und for doa Umn drowin were fth same a for ft originl prjcto, ad D ofterwise; (3) the nmnber of itertions
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shows nine projections and the corresponding should be exactly equal. Note that projections I and 9
rcotructions for the hexagonal prism (Marill's produce pychologically implausible ronstructions.

algorithm failed for all of thes projections). An ex- In a second set of experiments, we used a random-
ample of a near failure is shown in figure 8, where the number generator to provide twenty ses of initial zs
eighth projection of the staircase is almost in special in the range -1 to I for exmples A through N.U With
position, producing the largest error, and using the the exeption of example DA which was always correctly
greatst number of ierations. In fact, when the rule reconstructed, the MSDA algorithm failed to converge
adding all pairs of parallel lines as planar faces is to a psychologically plausible solution in at least four
renoved, the algorithm leaves the z values virtually un- of the twenty triab on each of the odhr line drawings,
chanVd from their initial values (not illustrated here). and produced an avenrge of ten failures per line draw-
In summary, in aty 500 trials, either the ing. In other words, the SDA term by itself has many
planarity enforcing MSDA algorithm correctly recon- local miniam that descent algorithms will fall into.
structed the original object, or it left the line drawing On the other hand, the planarity enforcing MSDA
as an "unintrpreted" flat object. algorithm succeeded in converging to a psychological-

By comparison, the MSDA algorithm is relatively ly plausible solution in all trials but one (it failed in
unsabl even for the line drawings one might expect it one trial of example N, the hinge.)'2 Ibis extremely
to get right. For example, figure 9 shows nine projec- robust performance was somewhat unexpected.
tion and the corArsp conrctions using the believed that the initial condition, z = 0 for all vertees
MSDA algorithm, for a cube in which all of the angles was an important component of the continuation

RS. & Nine projections of the staircse, and our corresponding reconstruction. Note dtt the eighth projection is very nealy in special posi-
tion, with many vetom and lines overlappin in the line drawing. The contimnaton method had the largest erfor and used the greatest number
of imteat for this cae. When the rule adding all paim of parallel lines as planar Sces is removed, the continuation method pren the
original line drawing (all zs constant) as the intepretation, which is certainly psychologically plausible.
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method. Howeve, it would appear from the results of run times, we implemented the conjugate gradient algo.-
these experiments that the imposition of the planarity rithm described in Numerca &Recpes (Press et al.
term in the continmion method severely curtails, or 1986). The algorithm requires an objective function (in I
eliminates Rpyoloially implausible minima. One this case, E(4>)) and the gradient of the objective func-
might conjecture that, for most line drawings, there is tion (in this case, a function that reurns a vector whose
onto (or perhaps a very few) psychologically plaus- s* element is the partial derivative of E(X) with respect
ible local minima in the SDA when the zs are con- to zj). Analytically deriving the gradient of E(X) is
strained to a planmr orthographic extension. rather painful, so instead we used a simple numerical

approximation; this involves evaluating the objective1
function for each vertex, which is expensive. A more

3.5 RecMoUrUCon me efficient implementation that only recomputes those
components of the objective function that change when 3

"The specific descent algorithm defined by Marill, and a given vertex changes could reduce the following run
decribed here, has the nice property that it's easy to times by a factor of four or better.
describe and easy to implement, no matter what the Table 1 gives the number of iterations/run time (in n
objective function may be; however, it is typically quite seconds) for three example line drawings. These ex-
hwfflciet. One of the better descent algorithms is the periments were run on a Symbolics 3645, so we would
conjugate gradient algorithm. To estimate achievable expect about a factor of ten improvement if algorithms 3

I
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were inplemenfed in C on a modern w•rkstation such planarity of certain faces. Fr instance, given the planar
as a SUN SPARC-2 (according to some simple bench- faces of the heagonal prism of figure 2, specifying the
marks that we ran). The last column gives the expected depth of the four venm 0, 1, 2, and 6 uniquely deter-
run tme for an optimized conjupte gradient algorithm mines the depth of the other vertenos: the depth of
running on a SPARC-2. vertes 3, 4, and 5 are detormined by constraining

them to lie on the same planar fuce as veotexs 0, 1,
3tb1t 1. Numbsr ci idi~'iminm/nm bine b dWS ma• 8and 2; similarly, vertex I1 is determined by vertexes

Onau C00 10 0, 5, and 6; vertex 10 by vertexes 4, 5, and 11; and
Deacam on aGdk onm G mdiauon vertexes•7, 8, and 9 by vertexs 6,1, andll.' 4

t Sywjbo•cs Swmbolks SPARC.2 Having determined the free vertexes, one can then

Cube 17/199 15/15 15/0.375 apply the MSDA principle to the reduced search space.
Tdrabedron 46/9 14/16 14/0.4 For the case of the simple descent algorithm, the only
Haaga Piun 406/1306 33/186 33/4.65 change o the algorithm is that only the free vertexes

are directly modified during the optimization, and that
Note that the conjugate gradient algorithm improves the depth of all of the dependent vertexes are recom-

the run-time considerably for all but the simple puted whemver a free vern is modified. Applyg this
ttahedmn line drawing. On a SPARC-2, the run times nedWd offie weres to the hexagonal prism reduces
are such that the time required to rconstum t a line the number of iterations from 406 to 39, and the run
drawing is small relative to the time it would take to time from 1306 seconds to 47 (the run time is reduced
manually enter the drawing. That is, the run times are by a greater proportion than the number of iterations
wel within "interacti time." becaue the DP germ has effctively been remoed from

the objective function).
Thus, the advantage of using the method of free

3.6 A Redauced Search Space Technique for Obtdning verte is that it reduces the search space and run times
Exact Planar MSDA Reconstrucions considerably-oftentimes an order of magnitude or

more. The disadvantage of using this approach is that,
In the planarity enfring MSDA algorithm described nlike the planarity enforcing MSDA algorithm, it re-
in section 3.2, planarity is not strictly enforced, but quires a virtually perfect line drawing of a planar-faced
rather, nonplanarity is penalized during the optimiza- object to ensure that the resulting reconstruction is
tion process. This approach almst always produces planar. For example, adjusting the (x, y) coordinates
faces that are very nearly planar at the end of the op- of even one vertex by a small amount in a line drawing
timization proces. There is a very efficient way to such as the cube (example A), can cause the 3D wire
smricdy enforce planarity during the MSDA optimiza- frame to be highly nonplanar for some choices of z
tion for line drawings of strictly planar-faced wire coordinates of the free vertexes. Consequently, the
frames, described below. The problem with this ap- method of free vertexes can produce reconstrutions
proach is that if the line drawing does not actually cor- that are not psychologically plausible. Nonetheless,
respond to a planar-faed wire frame, or if the line there are certain situations in which this approach can
drawing is not accurate, the resulting reconstruction will be effective, both for special kinds of line drawings,
typically be pqIhologically unacceptable--we lose the and for line drawings that are first processed to make
graceiul degradation provided by the planarity enforc- them precise projections of the intended 3D object.
ing MSDA.

7The foowing method for strky enrcing plarity
is based on the observation that there are far fewer 4 Implication for Human Vision
degrees of freedom in a planar-faced object than there
are vertexes (to reemphasize, this method is only ap- Line drawings provide an effective means of commun-
plicable to line drawings of strictly planar-faced wire ication about the geometry of 3D objects. It is a matter
frames). One way of expressing this observation is in of some debate as to whether the interpretation of line
terms of a subset of vertexes, that we call the free drawings is a learned skill, or whether line drawings
wrtee, whose z values uniquely determine the z values are isomorphic to some intermediate construction of
of all of the other dependent vertexes by virtue of the the human visual system (HVS) in its normal processing
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at imaey, but in eithe cae utan nýdrta ofhow should be met-mostly differt instantiations of the
humans nerpret line drawings is extremely important idea that regularities (such as parallel lines or equal
in gambling man-mchine couiainwith respect angles and lengths) observed in the line drawing arem
ID inW.s, diapams, and spaia constructs. In this sec- not accidental, and should be preserved in the recon-
tid we address tw related questions arising out of the sutcwd object; othographic projective invariants, such 3

Sdescribed in earlier sections: (a) under as parallelism, should then also be preserved in the
what conditions is a line drawing actually given some reprojections of the spatially relocated object. One
intended 3D interpretation, and (b) under what condi- could write computmaotil procedures to search or such -

tibo does a moving rigid (wire frame) object actually invariants, but this approach seems incompatible with
aper rigid. the universality of the human evaluation process (e.g.,

Some, but not all, line drawings are perceived by none of the invariants we happened to think of may be
human subjects as being three dimensional. What at- present in the instances we are considering). A more
tributes of the drawing promote such an ite tn , powerful idea is to require that the computational pro-
and what are the constraints on the nature of the cedure that produced the original reconstruction give
resulting 3D construction? PWNially because human in- the same result when applied to any of its general posi- [
trosp-to- is involved, this is a very difficult question tio. reprojections-that is, a consistency criterion. This
to answer. For example, if the drawing is recognized is exactly the condition that obtains when we observe
as a known or previously encountered 3D object, it a moving or rotating object to be rigid; when we see !
might be visualized this way ev though it violates con- a (continuous) sequence of projections that we perceive
ditions necessary for an unfamiliar object to be perc- as being isomorphic to the same geometric reconstruc-
eived as being three dimensional. Gestalt psydiologists tion, we perceive the object as being rigid." 3
have suggested thad if the drawing offers a simpler con- Applying the above ideas to an evaluation of the
struct when seen as three dimensional than when seen MSDA algorithm, we find two serious deficiencies in
as being flat, it will be perceived as being three dimen-
sional; however, an dkfctive cmuainlprocedure _

to evaluate "simpler" has yet to be provided (and there
is adlo the problem of producing thi corr esp-ding 3D

ut). One might c ider tat minimiz� �ngular
variance is an example of a simplicity principle, but
we have not yet been able to define a formal complex- I
ity metric, as was done, for example, in the work of Fir View _JMantis ReCOnSUuction

Lcclerc (1989).
It appears to be much more productive to show a

human subject a candidate 3D reconstruction and ask
if it corresponds to some given line drawing than it is
to tabulate introspective judgments about whether ob-
jects appear to be 2D or 3D. The former approach, in
fact, is how Marill presents his results to the reader. So'- View M at'. ctwn

Obviously, he can not show an actual 3D reconstruc-
tion, but only a projection. If he showed the retort- Fig. 10. Ilustraion of the bilure of Maril's algritmn to recome

stucted object projected without some spatial reloca- geometrically similar 3D models frmm two diffrenot projections of

tion, then all we have is the original line drawing back the sane 3D project. The top row shows the input hie drawing of
the 3D object as seen from one viewpoint (similar to eample G),again-and no determintion can be made; Marill reconsuof••ed object. Ie boIm- tow show

shows two projections of his reconstructed objects, the input line drawing of the same 3D object as seen fom a dif-
rooted by a few degrees, for evaluation by the reader. fuem viewpoint, and two views of Marill's reonstructed object. The

Now we know that every orthographic extension is a two r objects not only appear ddffera, but arn in hict

gemaecaUy kasible - r , so on what basis sinimicutl diff Swneril, awe vei a s ed by eamunin their

does the human judge acceptability (i.e., what we have internal representaion. In contrast, applying our algorithm to both
ddb ( wof these input line drawings, as well as ten other randomly chosen

called a psycholgIcaUy plausible reconstruction). It views pmruced reconsructions with an angular error of less than
is easy to hypothesize a whole list of conditions that thirteen degrees from the original object. I



An optiuauon-Based Approach to the Interprewion of Single Line Drawngs as 3D Wire Famns 129

0.0 22545.0 67.5
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Rs. ii. Mwe iflusmm of noarigidky for a rotting wire frame with nonpbaw faces. The wire frame, MariU's reconstructiom of cmIple J, is
'P'd about a vetical axis in the Cetr of the object. we rotafion augle is written in the Ww loft-d coner of each box.

the algorithm. First, when presented with two dif- rotated. Similarly, the wire frames of some line draw-
rent orthographic projections of an object, the MSDA ings with all of the z coordinates set to zero appeared

algorithm sometimes fails to recover 3D wire frames nonrigid when rotated (e.g., example A). Furthermore,
that are even remotely similar to each other (see figure all of the hundreds of solutions produced by the planar-
10). Second, when we use the computer to create a ity enforcing MSDA algorithm that we loolked at ap-
rotating display of some of the reconstructions obtained peared rigid under rotation. Thus, we tentatively con-
with the use of the MSDA algorithm, we see what ap- dude that a wire frame must not only be planar to be
pears to be the movement of a nonrigid object (see perceived as rigid, but must satisfy additional con-
Figure 11). straints, such as being a local minimum of the SDA.

The latter observation led to a number of casual ex-
periments to determine the factors affecting the percep- 5 Future Work
tion of nonrigidity in displays of rotating 3D wire
frames. We found that wire frames with pronounced There are a number of directions that we have begun
nonplanar faces (where one would have expected a to explore or that we plan on exploring in the near
planar face from the line drawing) appear to be future.
nonrigid. Marill's solution for example I (asymmetric The first of these, for which we have some prelim-
solid) does appear rigid under rotation, even though inary results, is a redefinition of the objective function
the faces are slightly warped. However, his solution is in which the angles are partitioned into groups that
very nearly planar; if we force a bit more distortion should be equiangular in 3D. This becomes necessary
into the solution, the object then appears to deform either when there are angles in the line drawing that
under rotation. Thus, it would appear that strict (or at are not a part of any planar face or when the angles
least near) planarity for the appropriate faces is a in a planar face are not all equal in 3D (in either of
necessary condition for the perception of rigidity. these cases, the symmetric preference theorem of ap-

However, planarity by itself was not sufficient to pendix D does not hold). An example of the first case
create a perception of rigidity. For example, if one is the hinge (figure 6), in which angles (1 0 4) and
chooses random values for the free vertexes of a cer- (2 3 5) are not a part of any planar face. An example
tain line drawing (see section 3.6), one produces an ob- of the second case is the trmcated box (figure 5), in
ject whose faces are strictly planar. However, unless which angles (1 2 3) and (2 3 4) should be equal to
the resulting figure is also a local minimum of the SDA, each other but not equal to the other angles in planar
the resulting 3D wire frame does not appear rigid when face (0 1 2 3 4), and similarly for face (5 6 7 8 9).
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gr. 12. An iuoa otthe sad t gup anuesw geer than should be equiangular, rathen apying the panarity enm•ing MSDA
pndacpIDe M all anles. (a) The remrucion usingan appropriate equiangular grouping. (b) The recunstruction using the planahity enbring
MSM princae applied ,A angles.

By changing the definition of the SDA term to be the & Pentland 1983; Malik & Maydan 1989; Pentland &
sm of the standard deviation of the angles in each Kuo 1990).
equiangular group (weighted by the number of angles An intriguing relationship between Barrow and
in that group), we have improved the reconstruction of Ibnenbaum's work on single curves and our work on
these two objects considerably. Defining a simple, yet planar faces is as follows. They defined the problem
robust, set of rules that can automatically determine of interpreting curves in a manner similar to the way
the equiangular groups fot a line drawing, as we did that we and Ma-ill did: by defining an objective func-
for the planar faces of the line drawings in this paper, tion over the z coordinates of the object and minimiz-
is still an open question. A simple rule is to group ing that objective function using a descent algorithm.M

together all angles that are a part of a convex face. TIis Their objective function was the integral of the change I
is illMustrated in figure 12. The reconstruction is accurate in curvature squared plus the torsion squared. Thus,
to 3 degrees, whereas using the SDA over all angles an ideal curve for their objective function is a planar
gives a relatively poor reconstruction. circle, since both terms in the integral are then zero

A second direction that we plan on exploring is to everywhere (when the end-points are removed from the
implement a presg step that would take a rough integral, the arc of a planar circle is also an ideal curve
sketch and enforce various constraints in 2D, such as for their objective function). Analogously, one of the
(1) parallelism between designated pairs of lines, or be- ideal curves for our definition is a regular planar
tween designated lines and axes; (2) equality in length polygon (or an arc of a regular planar polygon), since
between designated lines, or between lines and fixed then both the SDA and DP are zero. Thus, the similar- -I
lengths; and so forth. The paradigm would be similar ities are that the SDA plays a role similar to the integral
to the one for the interpretation of the line drawing, of squared change in curvature, and the DP plays a role
namely some set of rules would be used to determine similar to the integral of squared torsion. Some of the I
which lines should be parallel or of equal length (with differences are that both the SDA and DPI terms are
outside intervention always possible), and an optimiza- global measures of symmetry and planarity, while the
tion step would then enforce the constraints while mov- curvilinear measures are integrals of local measures. I
ing as little as possible from the original line drawing. A second difference is that the SDA is also zero for
The ideal is to be able to do as much of this as pos- some nonregular and even nonconvex polygons.
sible without intervention for an interactive user. Pentland and Kuo (199) applied Barrow and Tenen-

A third direction is to explore the relationship be- baum's idea to distinctly nonplanar curves and surfaces
tween what we have done and previous work in under- by leaving out the torsion component. It is somewhat
standing the 3D shape of curves, such as (Barrow & surprising that this worked since both Barrow and I
Tenenbaum 1981; Stevens 1981; Witkin 1981; Barnard Tenenbaum's and our own experience indicate that

I
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MI
planarity is a key ingredient in making the optimiza- (appendix D) that if a planarity preference is explicitly
tion approach work. We will explore this question in added to the MSDA objective function, then indeed,
the near future. the nonobvious preference for symmetric solutions is

Finally, we would like to find some computational- also present. However, we are now forced to address
- ly effctive procedure for using the rigidity under rota- the problem of how to provide the auxiliary informa-

tion criterion in the 3D recovery process, rather than tion necessary to partition the drawing into the coherent
as a final check on proposed solutions. components corresponding to the 3D planar faces. It

appears that the HVS selects some subset of the con-
tours in the line drawing as corresponding to the planar

6 D scuusion faces in the 3D model, and if we do not supply this
information to a recovery algorithm (either explicitly3Traditional or by providing a set of conditions implying the same

nature, they deal with issues of existence and consis- information), we will fail to recover psychologically ac-
tency based strictly on geometric considerations; they ceptable models.
make no reference to what people actually see. The Most of the work in the blocks-world tradition
problem defined by Maril is psychological; since every employed perfect labeled line drawings with the assign-
line drawing has an infinite number of mathematically ment of vertexes to faces given as part of the input
valid orthographic extensions and no invalid ones, on specifications. If we follow the same approach (al-
what basis does the HVS select a particular extension though we are not concerned with having perfect line
as being psychologically acceptable? Marill proposed drawings since our recovery method employs optimiza-

Ian intriguingly simple criterion for duplicating human tion, which can tolerate deviations from any of the con-
preference, but we have shown that, while it often pro- straints embodied in the objective function), then-we
duces an acceptable answer, it is unreliable even in very at least have provided a tool for simplifying man-
simple situations. machine communication using the language of line

Marill's work has similarities to the Huffiman- drawings. However, there is obvious theoretical value
Clowes-Waltz approach that focused on how polyhedral in understanding the criterion for human selection ofE vertexes can appear in a line drawing and, hence, the the circuits in the line drawing that correspond to planar
constraints such vertexes impose on the implied 3D faces in the 3D model." In part, this importance is
model; Marill considers only the constraints implied related to the issue of how the HVS recovers the shape

I by line intersections at specified vertees in the line of a moving object. Even though there are a few well-
drawing. Mackworth, Kanade, and Sugihara found it known exceptions, it is widely believed that the HVS
necessary to introduce consuraints based on the explicit will assume an object to be rigid and correctly recover
assignment of vertexes to planar faces. We show here its shape if this is indeed the case.9 However, the rigid
the need for introducing a similar explicit requirement wire frames with nonplanar faces provide a whole class
for planarity (actually, in the context of optimizing an of counter-examples to this belief-they appear to be
objective function, our constraint is soft in that it can nonrigid when observed in motion (even at very low
be violated). However, in our case, the requirement for speeds where maintaining correspondence of vertexes
planarity is justified on psychological grounds rather from one projection to the next is no problem). The

I than as a means for achieving a geometrically more nonrigidity appears to result from the HVS making in-
competent algorithm. correct decisions about how the drawing can be parti-

The preference of the HVS to interpret a line draw- tioned into planar faces (see appendix E).
I ing as the most symmetric polyhedral (planar-faced)

object consistent with the drawing is well established
in the psychological literature. Marill appeared to have 7 Summary

I discovered a simple computational procedure for find-
ing such solutions for any given line drawing, but on Marill's recently published paper claimed that the
closer examination, it became apparent that his MSDA simple procedure he described could duplicate human

I principle does not enforce (or even prefer) planar solu- judgment in recovering the 3D wire frame geometry
tions."7 Because of this deficiency, MSDA is unreliable of objects depicted in line drawings. He provided some
even in very simple situations. We were able to prove impressive examples, but no theoretical justification toI
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back his claim. In thi arw*le we critically examined NOWe
the -wt of MartIrlsalgorithm, provided at least apar-
tia explnation f"r its competence~, idntfied weak- 1. Gradient space, originally conceived of by lamae Clerk Max-
nesse, showed bow it could be improved, an discusse well in 1864 (me (Whisely W56) sad rediscovered by DhA. Huff-

the implications of this work for clarifying some im- mn prvie only necessary conditions for planar hmaizbil
porianit problems in human perception. ity o Ogenieral polyhedral objets with hidden lines rumvid, andI

thus consistent ed* labeling is possible for impossible blocits
In puticular, we provided a number of theorems tha worl and Origaini objects. Further, the labeling/recovery

show that minimizing the stadard deviation of angles algrithm Were M al-yi compete to flnd an aoiming solution.

is (potentially) a simple and effctive methd for selec- 2. There wer scmo other problems of lemer significance for our
tingsym etrc slutins henft onstainng inepurposes. For examlie, the algebraic formunlation was sensitive

is th proectio of wirefram tha computation round-off ermou, and digitiriton errors in spec-

may be incomplet) permits suhinterpretation. O h eas fa&mnrniei ncuais uhn ehwt
other hand, we showed that Marill's algorithm could fthi problem by adding an optimiatio step to his algorithm,
fail in simple case, that he employed an optimization which could find a feasible reconstruction if the input drawing
procedur'e that was often too weak CD fidtecorc an almost correct specification.
answer event when it was within the competence of the 3.Marlfl, on the odher hand, oills the se ctlaD possible zB the ortho-I

objective function, sand that the algorithm would often 4. For simplicity, the vertexes anreprqiesented by only two digits
produce wire frames with nonpianar faces (something of precision in the table. However, we used the full 32-bit preci-

no humian would intuitively accept in perceiving a amn of the projection in the internal representation used by the
straighit-line drawing as a 3D configuration). a*wrthkm_. teegnrlycnb aydfeetwy

'~argued that an important condition in testing or ofcvrn medaig hs of blct-ol ojcswt
evaluating the psychoilogical plausibility of a reconstruc- hidden lines removed will be covered uniquely if we demandI
tion is that its reprojections (after spatial relocation) that the interior of the 2D circuits be free of any lines. Vkf also

reutin the same object beng produce by th oery nowe that it is not lqs possible to cove a line dratwing with

algorithm. For the human visual system, this is equiv- =Wk le osed circuits correspodng to the Specified plmr hoes
of a given orthographic extension (see example N). It may also

slewt to the condition that the recovered object appear be the cue that a given covering has no noutiivial orthographic
rigid when observed during movement or rotation. 71e extnsion with planar hoes as specified, as in example 0.

perception of rigidity for wire frames appears to be 6. One hisoe, in example H, is an exception to this statement.
highly correlated with the presence or absence of Howvever, there are enough other geometric constraints in this

strongly nonplaniar fakces. By modifying Marill's ob- particular cawse o enforce planarity
Jectve fncton t exlicily fvorplanr-fced o7u Because this rule typically produces many additional plowr hoes,jectve uncton D eplictlyhivo plnarfitcd slu-it was not used in figures 2 through 6 For these line drawings,tdons, and by using a more competent optimization the results are virtually identical with or without these additional

techniqu, we were able to demonstrate significantly planar hoces. However, the rule was used in the stability and
improved performzance in all of the examples Marill tobustness; experuents of section 3.4.I

provded s w~l a thoe aditinaloneswe cnstucte 8.The SDA term is first squared to make it cormmensurawite
Provdedas wll s tose ddiiona ons w contrutedthe DP term. Note that squaring the SDA term has no effect on

ourselves. The robustness of our algorithm was demon- the minimization when X -1I (i&e, din simple MSII4 algorithm),
strated by obtaining consistent psychologically planis- because the SDA term is positive, and squaring is a monotonic
R&]kPr.nW utin in hundreds of expermimet involv- fuinction of the positive reals.
ing variations in viewpoint and initial conditions fur 9. Ithis assumnes the line drawing is perfect. Atb later discuss how

the W n natly 0 obect in ur autbse.such perfect drawings; can be obtained in an interactive

10. Since we had only the original line drawing for each of Marill's
Adm' edgements examples, ve used the reconstruction from each line drawing

as the 3D object for the random projections.
11. The line lengths for these drawings wer approximately in the

The wiork reported here was partially supported by the rag of 2 to s.
Debune Advanced Research Projects Agency. Vk grate- 12. Fbr all line drawings except the truncated box aind the hinge, the
Muly acknowledge the valuable discussions with Aaron largest absolute diffrene in angles between any trial and the

Bobik ad Toma Strt rgaringboththeconent-Preconstruction with z 0 was less than one degree For the trun-
Bobik an Thmas tratregrdin bot th conentcoed box, the largest error was less than fifteen degrees. For

and organizationt of this article. A number of improve- the hinge, one of the trials caused the hinge to "fold" with arc-
,,ents and clarifications in its final version were sug- pairs (10 4) and (2 35) going to zrom degrees. Otherwise, the

gested by fThomas; Marill in a private communication. largest error was less than seven degrees.I

13. Modulo a change in sign in the z coordinates.
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iumral circi to a convex polygon is dened to be a complete-sar consisting of the eight 45-degree
a circuit for which all the veroes are internal to angles formed at the corner verom by the dionals I
the polygon, and for which the ends of the circuit with the sides of the square. Example G contains
lie on nonadacent vertus of the polygon. this sam configuration in its central plae.) Wk note

5. A closed simple contour in a line drawing, without at if an essentially infinite number of copies of an
internal lines, corresponds to a planar face in the angle ofd degrees (where 3601d - kand kis an i

og ` .ineer) is uniomly dis•tbmed in orientation over

An aithmic procedure for identying 3D planar a plane, then the mean value of the angles under any
faces in the corresipon. i 2D line drawing of a wire orthographic projection of the plane is the constant
frame has been constructed by composing the require- value d.
mints of itens 3, 4, and 5 into a single algorithm, as 3. Vk note that if the angle between tw line segments
dened in section 3. lhat procedure is sufficient to deal is less than 180 degrees, the angle can be closed to
with al of the examples we discuss here, but is not form a triangl and since triangles are preserved
general enough to handle other cases we can think of. under both orthographic and central projection, an

angle of less than 180 degrees will never transform
Appumifz B. Prq dve Iwa under Isuch projections into one of more than 180

degrees. St will call a closed planar contour con-
The following are same important projective invariants vex if the region it bounds is convex. Since a con-
for planar geometric structures, vex contour has all internal angles of less thn 180
1. The sum of the interior angles (measured between degrees, a convex planar contour remains convex

0 and 360 degrees) of a closed plaar contour with under both orthographic and central projection.
n sides equals (n - 2) 180 degrees. Thus, since a 4. VW note that the orthographic projection of an ar-
polygon of n sides projects to a polygon of n sides bitrary nonpbanar polygonal space curve, with four
under both orthographic and central projection, the or more sides, has a probability of projecting to i
mean value of the interior angles of a given closed either a nonsimple or concave curve with a prob-
planar comour [(n - 2)180/nj is inimnt under both ability (P) that increases with the number of sides:
orthographic and central projection. P> I -0.5"- forn k 4
V& note ta Marill measures angles only in the in-

terval between 0 and 180 degrees. lb the extent that This expression is basd on the following model: Con-
we are prnmarily concerned with equiangular closed sider a process that generates a chain of 3D random
contours in the application of the above theorem in ex- vectors by generating three random numbers for each
plaiing and using his results, this discrepancy is ir- vector (in spherical coordinates, an angle uniformly
relevant since all the interior angles of such contours distributed between 0 and 360 degrees, a second angle
are less than 180 degrees. between 0 and 180 degrees, and a length uniformly
2. Consider an angl (two line segments sharing a com- distributed between 0 and some fixed integer L). As

mon endpoint) in 3D space and its orthographic pro- each vector is generated we extend the projection of
jection. We will call the plane containing the angle the developing space curve on the X-Y image plane. The
the source plane, and the plane containing its pro- process stops after some fixed number of steps, which
jection the projection plane. If the angle is translated is determined by choosing a random number in some
in the source plane, its projection is also translated, given range; the curve is now closed by connecting the
but does not change in magnitude from its original starting point, which could be the origin of the X-Y
projected value. Now consider a set of n angles ly- plane, to the last point generated and this determines
ing on a common source plane, such that the sum whether the inside is to the left or right as we follow
of these angles is 360 degrees. If it is also the case the chain of edges of the projected polygon. We note
that the angles can be translated so that when all that the only relevant factor in whether the projected
their vertexes coincide, they exactly span an angle closed contour is convex or concave is the cylindrical
of 360 degrees, then the mean value of the set of angle giving the rotation of each of the random vec-
angles (360/n) is unaltered under orthographic pro- tots relative to the X axis in the image plane. For more
jections. We will call such a collection of angles a than three sides, there is a 50% probability at each
"complete-star." (Example C, for instance, contains vertex that the inside angle is greater than 180 degrees, i
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which thus produces a concav polygon (the last clos- of the triangles in T (i.e., less than (n - 2)180).
ing side can be ignored since it does not have the same Cm=2: If the projetion ofie space curve Sis can-
statistics as the other edges in our randomn modiel.) came and we measure angles between 0 and 360
Olber probabilistic models would give nonidentical, but degrees, the sum of fth imenwna contour angles in dhe

simlarreult. Te coditonis based on additional planar projection will equal (A-210as inCase1I- onsdertiossuch as the projected curve intersec- However, while the space angles with projections of
tin itsel am though the input specification does not less than 180 degrees will decrease at foids, the inernal

-, record a vertex at the cross-point, angles greater than 18 degree will increase (i.e., at3 5. Closed fou-sided polygonal space curves with vertexs where there are folds, the polyhedral angle in
90-dgre angles at each veute are planar contours. the argument given in Case 1 is now formed for the
To prowe this assertion, let the sequence of vertexes ezternal angl of S at P'). Thus, since some angles will
be labeled a, b, c, and d. Let the plane containing increase and others decrease, we cannot be sure thaz

liaLqu and Lk (and thus vertees a, b, and c) be the curv is planar ame if the sum of its internal angles
called pl. Since all angles are 90 dogree, Ld must equals (n - 2)180 Hloweve, we do have a sufficient
lie in a plane (P2) normal to Lbe at c. Similarly, lud condition for nouiplanarity. That is, the curve is known
must lie in a plane (P3) normal to lu at a. Verex to be nonplanar if the sum of its internal angles, mess-
d must then lie onthe line (Ld of intersection of P2  ured between 0and 360 degrees, is not equal to (n -3and P3. which is normal to P,.- V& know one solu- 2)180 degrees.

do sto locat d at the point of intersection Wd)
of L,1 and P1 (wheoe a, b, c, and d( form a rec- ApdhC. A hartklen hhere
tangle). This is dhe planiar solution and we wish toIshowdot no other solution is possible. V*note that T1he variance of a set of Sof n objects (a~,) is defined
a second constraiont ate locationcd is that itmust as
lie on a sphere with diameter ac (i.e., all rightU nges with logs passng thiough points a an c V == ta] -M 2

must be inscribed angles of circles through a and n, n

'is tangent to the sphere at X and of s the only
possible solution. M4I 6. A Okpbal Pkmdary hat for a Space Qawy. A n, _1planar polygsonal Curve has a sum of internal angles
equal to (n - 2)180 degrees. Thus, if the curve is Let us now partition the jai) into k subsets, such
triangulated using only the existing vertexes along that the suibset Sj has nj elements and mean Al, where:
the curve, the sum of the angles of the triangles is
also (n - 2)180. a
Case, 1: Consider a space curv S that projects to nj sj

a convex planar curve. If de space curve is itself planar, Let Vj be the variance of Sj about Al, and let A =
the sum of its angles (measured between 0 and 180 (Ml - Al1).
degree) is (A - 2)180. Assume S is nonplanar, that
is, there is a "fold" along one or more edges of some Theoremn:
triangulation of its planar projection. Consider the k3vertex V at theintersectioof one such fold (with V - F.nj[V+g]
respect to the implied triangulation 7) and S. The plane n,
through the twoedges of Smeeting at V, andthe facesIof the triangles of T that have edges intersec-ting at V, Proof. The expression for V can be rewritten as
form apolyhedral angle. It isknowni theaWal flide anigle V==![E[ai -(Al+, 1 + )]2 +E[a, - (Al + ia2)J
of apolyhedral angle is lessathan the sum of the other nI, s2I ~face angles. Therefore, the sum of the angles of fth1
space curv is equal (at vertexes with no folding) or + -- + Z [aO (Mk + Ak)J2 I
less (at vertexes with foling) than die sum of die angles S
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Vf we l)a: angular planar Commur and sarn (such as doe solutions

5, ~correspond to die globa minimum of the SDA ame all
ThU va bove: Planar orthographlic extensions. *

-2idj + 2M Aj If we nwa u nwyd erived ord o gapbh exeension
N1 of almost any of thieline drawings uuedas examples

aime duat E(*Vn~ . M1, we nowedo thatde 41h and 6th in this article, the object appears nonrigid to most
tents ml ad die 2nd and Sth trscombine: observers (even though, of course, the wire frame is

actually a rigid object). While there are many possible
M2J V v~eatia' kv tis phenomenon, our coqJecure is that

a1  it is primuarily due to special position projections of the
And wire frame (that occur at one or moan poses; in its rota-

tion) tha lead die HVS to incorrectly assume that some
V* jI j+AJprojective invariant (such an parallel lines, see figureI

QED 11) is being observed. This, in turn, causes incorrect
expectations about the presence and location of planar

Appsed~ ILSymmrk rdkow Teassenhces.
V~e informally looked at some other possible causa-

Decal that tive Actors, but did not observe consistent nonrigidity
I1. In appendix B we showed Urnt the average angle of phenomena. For minmple, we looked at objects, such I

all plain orthographic extensions, of a give aim- as example N that produce compelling 3D interprets-
pie dosed 2D conoura are the same, and that the tions with Necker reversals, but for which the drawing
avemor angle of all planar orthographic extnsions is inconplees-it does not show all die edges that should

of a compliewssar are also the same; be visible, for example, where plana faces intersect.
2. in appendix C we proved a theorem that allows us There was die possibility that dims missing edges in

to compute the SIIA of a act of simple closed planar die 3D model (and thus missin lines in die drawing)I
cIanto. (and/r omle-sr) as die sumi of two could cause die appearance of a nomplanar-Awed ob-
CoI Mponuw The firs component is die Variance of ject to be obsrved. But the higW and die few other
the angles in a contour or star about the mean angle objects we looked at in this category, appeared rigid.
of that contororssummed ovralcnor kas okda opaa rhgahccuin
and seThseodcmoetia egedsn ofdrawings that generally appeared fat, including
of die squared diffiences: between the -ea angle blocks-verld type drawings tha do not hote correspon-
of each contour and sear, and the average of all die ding polyhedral realizations (such as example, 0). The
angles under consideration. results here were ambiguous. The rotating objects
By (1), die second component of the variance is con- generally produced ilusions of nonrigidity, but since

se oer all plate orthographiic extnsions because (a) these objects did not always appear 3D, die illusions
the mean of each contour and sear is constant ove all were generally Very Weak.
such cextesions, and (b) the mean of all angles can be Some other causal experinmet include cases where
computed as die weighted sum of die mean of each con- all die lines connecting the vertexe of die wire framesI
tour and sear. are deleted; we observed that some of die wire frzames

Consquenlyif we restrict our attention to the that originally appeared nonrigid now appeared to be

plaar rthgrahi extensions ofa line drawin, then rigid une rotation. And, as a general observation, weI
by (2) above only the first component of the variance have not encountered any eamnples in which the wire
will chapg over the extensions. Since die first com- frame of a,- (non2deg-nerate) blocks-world object appears

ponent is weo for an extesio comprising only equi- nonrigid when in motion.
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Saliency Detection and Partitioning Planar Curves*

Martin A. Fischler and Helen C. Wolf

Artificial Intelligence Center
SRI International
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"(fischlerOai.3ri.com wolf@ai.sri.com)

Abstract among neighboring potential partition points that may
be salient at different "scales of resolution."

This paper summarizes the underlying ideas and algo- While our focus in this paper is on curve partitioning
rithmic details of a computer program that performs at in a generalized setting (the curves in our experiments
a human level of competence for a significant subset of are mostly without semantic meaning), and where the
the curve partitieonig task. It extends and "rounds out" criterion for success is duplicating normal human perfor-
the technique and philosophical approach originally pre- mance, finding salient points on image curves (potential
seated in a 1968 paper by Fischler and Boliles. In par- partition points) plays a critical role in both two and
ticular, it provides a unified strategy for seieccing and three dimensional object recognition, in curve approxi-
dealing with interactions between salient points, even mation, in tracking moving objects, and in many other
when these points are salient at "different scales of res- tasks in machine vision.
olution2' Experimental results are described involving In many approaches to 2-D object recognition, objects
on the order of 1000 real and synthetically generated are represented by their boundaries, and the recogni-
images. tion techniques depend (directly or indirectly) on locat-' Index Terms: computer vision, salient points, critical ing distinguished points along the boundary; typically
points, curve partitioning, curve segmentation, curve de- these distinguished points are discontinuities or extrema
scription of local curvature (sometimes called "corner points") and

inflection points [e.g., Mokhtarian86]. "Corners" on the
1. Introduction contours of imaged objects are often used as features for

A critical problem in machine vision is how to br tracking the motion of these objects and for comput-
(A rtitin) the peremive worldhinto cisohnts howoreak UP ing optical flow [e.g. Mehrotra90J. In 3-D recognition,

f(partition) the perceived world into coherent or meaning- partitioning is typically one of the first analysis steps -ful parts prior to knowing the identity of these parts. Al- especially when objects can occlude each other. Hoffinan

most all current machine vision paradigms require some and Richards [Rofbmano2l argue that when 3-D parts are
form of partitioning as an early simplification step to joined to create complex objects, concavities will gener-
avoid having to resolve a combinatorially large number ally be observed in their silhouettes, and that ses men-
of alternatives in the subsequent analysis proces. Given allob ob i n thersilhouettes a thegmen-
this critical role for partitioning as a functional require- tation of image contours at concavities (the maxima of

S met of a complete vision system, it is a major challe negative curvature along the contours) is a good strat-

to find some significant subset of the partitioning prob- egy to decompose (even unmodeled) objects into their
lem for which an algorithmic procedure can duplicate In cartography, computer graphics, and scene anaysis,
normal human performance. This paper (a compressed i n cato raphy tomput ics, an sene anay
i version of a much longer document which will appear it is often desirable to partition an extended boundaryS in IEEE PAM! later this year) summarizes the under- or a contour into a sequence of simply represented prim-
ying IdEas and algorithmic det)sumarisf a e mputerp- itives (e.g., straight line segments or polynomial curveslying ideas and algorithmic details of a computer pro- of some higher degree) to simplify subsequent analysis, gram which performs at a human level of competence

for a significant subset of the curve partitioig tas. t and to minimize storage requirements [e.g., Teh89].
extends and "rounds outf the techique and philoasophi. In our own current work concerned with delineatingcad approach originally presented in a 1986 PAMi paper linear structures in aerial images, the technique pre-by Fischle and Boill pFisceler86]. For example, it pro- sented in this paper was an essential component of thevides a unified strategy for resolving conflicts in selecting system (briefly described in Appendix C) that produced
video aniforoncfcthe results displayed in Figure 6.

"Thu, work was perswmed under contracts supported by the
Dfenm Advanced Research Project. Agency.



2. Problem Statement chine vision. It has been widely assumed that in order

In its most general sense, partitioning involves assign- to reduce the combinatorics of scene analysis to a man-

ing, to every element of a given "object" set, a label ageable level, it is necessary to decompose images into
from a given *label" set. For our purposes in this pa- their meaningful component parts as one of the first steps

per, the object set is the set of points along % curve (or in the analysis process. The difficulty arises from the

contour segment) lying in a prescribed region of a two- need to partition the image into parts before we know

dimensional plane. While we deal with cases where the the identity of those parts. The underlying assumption
points in the object set do not form a continuous dig- then is that there are generic criteria, independent of the

ital curve, in most of our exposition in this paper we goal of the analysis, that if discovered, could be used to

will assume that the curves are continuous I and non- obtain useful (or at least, intuitively acceptable) parti-

intersecting. Our label set is binary, points will be called tioning; additional problem dependent criteria could be

either significant (critical) or non-significant, for some always added to produce a more relevant result for some

specified purpose. In Fischler and Bolles [Fischler86], particular purpose.

it is demonstrated (or at least argued) that perceptual The partitioning problem becomes progressively

partitioning is mot independent of some assumed task harder as we increase the number of dimensions in which

or purpose. In this paper we focus on one of the three we are working; in this paper we only address the 1.5-D

tasks discussed in the above reference: Selecting a small problem of partitioning planar curves. A specific crite-

number of points (called critpts) along a curve segment rnon which can form the basis of such partitioning was
which could be used as the basis for reconstructing the originally proposed by Attueave [Attneave54] - points

curve at some future time. Figure 1 shows the specific at which the curve bends most sharply are good parti-

instructions and curves used in one set of relevant exper- tion points. 2 This idea has been the starting point for

iments involving human subjects; this figure also shows most of the subsequent efforts in curve partitioning, but
the critpts that were selected by the subjects, and the attempts to convert this abstract concept into a com-
comparable results produced by our algorithm (called putationally executable procedure, that gives intuitively
the Saliency Selection System, or SSS, and discussed in acceptable results, has meet with limited success. 3 Ref-

Appendix B). erences [Imai86, Mokhtarian86, Pavlidis74, Rosenfeld73,

In order to separate the generic partitioning criteria Teh89, Wuescher9l] are representative of work in this

used by human subjects from criteria based on their area. 4

past experience, such as when the subject is able to as- The main problems we must solve are:

sign a name to the curve (e.g., the curve looks like the (a) A way of assigning a measure (or degree) of
letter "a'), we used 'randomn curve segments for our saliency/criticality 5 to each point on a curve.
experiments; the technique employed to generate the Most investigators have equated sharp bending of
segments is described in Appendix A. We also wanted a curve with the mathematical concept of curva-
to avoid having to deal with the recognition of global ture, but curvature is not well-defined for a finite
features (e.g., symmetry or repeated structure, or evenstraight lines and analytic curve.) as a condition for mak- sequence of points (which is how our sensor ac-

quired curves are generally represented). Further,
ing critpt selections; avoiding this problem is justified if it is not obvious that the mathematical definition
we are correct in our belief that local and global anal- of curvature is the best computational approxima-
ysis are accomplished by separate mechanisms. In or- tion to the human criteria for criticality. In Fis-
der to deal with global features, the complexity of any chier and Bolles [Fischler86], bending is interpreted
solution would be expanded enormously since a whole
new vocabulary of such features and their representa- 2Ho*Tman and Richards Pfoffinau2] give convincing evidence
tions would have to be implemented. The generation that we should distinguish between pomitive and negative curva.

and use of random curves took care of this problem also ture maxima. That is, on cosed curves, extreme points of nega-
tive curvature - associated with object concavities - have geater

(i.e., it is highly unlikely that symmetries or repeated utilityas parttion pont. than positive curvature maxima, but the
structure would ever be generated by our random pro- positive maxima (mad inflection points) play an important role in

can). describing the individual sego ents.
3As noted later, most of the work an the curve partitioning

problem, especially recent work, has mot been concerned with du-

3. Relevance, Prior Work, and Critical plicating generic human pedorman, but rather with performing
spea& visual tasks having different criteria for s .cce.

sues Tb approah taken by WMescher and Boyer is distinct in that
The partitioning problem has been a subject of in- they fhrt extract contour sements of approtxiaely constant cu

vall~tur and thenz infer the locat~dion of pardttionl points as a seodr

tense investigation since the earliest work began in ma- peraeation
SWe will use the terms saliency and criticality sornewhat inter-

Each point of the nos-branching •me pixel wide curve, with chaugeal in this paper. However, saliency can be considered to

coordinates (ny), has one or more eighbon with x-coordinates in be the generic subset of points that are critical for some partition-
the aet (z+l, z, x-1). and y-coorndite in 6th set (7+i, y. Y-i). ing task.



as deviation from straightness - it is closely related so that our program would make the same selections
to proposed approximations to mathematical cur- as human subjects when there was near unanimous
vature, as illustrated in Figures 2 and 3, but has agreement among these subjects. This algorithm is
a number of advantages: it is an easily measured described in Appendix B.
quantity, even for digital curves (i.e., sequences of
coordinate pairs), and as discussed in the next sec- 2. An analysis of how geometric scaling of the in-

tion, its local extrema are in better accord with hu- put curve, and resolution specific operations on the

man preference (choices based on approximations curve, can be equated, and thus the development of

to the ddnition of mathematical curvature occa- a basis for normalizing criticality scores across scale.

sionally include anomalous points as shown in the 3. Development of a general approach to the problem
examples of Figures 2 and 3). of resolving the competition/cooperation interac-

"(b) A way of adjusting the criticality of a given curve- tions of geometrically related objects based on "lo-
point to take into account its interactions with its cal dominance." The same machinery used to deal

neighbors; i.e., local context. It is obvious that with interactions at a given scale of resolution is

human subjects will often avoid assigning a critpt also used to resolve conflicts across different scales

label to both members of a pair of points, even when of resolution.
both points have high (independent) criticality val- In the remainder of this paper, we describe our so-
ues, if the points are close neighbors along the curve. lutions to the problems enumerated above, and then
The basic approach of local non-maximum suppres-sion is not sufficient, in itself, to duplicate human present examples and experimental results to justify the
performance, design decisions we made and to illustrate the perfor-mance capabilities of our algorithm.

(c) A way of dealing with the interactions between
critpts that are significant at different ;e les of 4. Evaluation of Saliency
resolution. If a human subject looks through a
fixed sized window at the same curve segment dis- Saliency is a critical attribute (for description and

played at two different magnifications, the selected recognition) assigned to perceived things in the world
critpts will not always be the same, and the selection by the human visual system (HVS). While an elusive

at the lower resolution will not always be a subset of concept in general, task specific specializations of this

those at the higher resolution (e.g., Figure 4). This concept are easily found that elicit consistent choices
is in contrast to the commonly held assumption that across human subjects. An acceptable computational
critpt assignment should be independent of'scale of definition of contour/curve saliency must provide a

resolution." The specification of a procedure that quantifies the

(d) A threshold of significance; a minimal level of abruptness and extent of the deviation of a curve
criticality below which variations are considered to from its straight-line continuation; a sharp bend is
be noise and no critpt designations are made. (Some more salient than a shallow one, and the greater
investigators reject the idea that any user supplied the excursion, the more prominent/salient the "fea-
parameters or thresholds should be necessary.) ture."

We have addressed the above issues through the solu- * Agreement with human judgement in terms of both
tions to a set of subproblems: selection, and accuracy of placement, of the criticalS~points (in some well defined context).

1. Definition of an algorithmic procedure (which is pa-

rameterized to deal with noise and scale) for asign- 4.1 A Computational Definition of
ing criticality values to each point on a curve in- Saliency
dependent of decisions made about the locations of Conventional definitions of curvature present a num-
(other) critpts. The solution to this problem, s- ber of serious problems with respect to their use asa
sentially the procedure given in Fischler and Bolles saliency measure in computational vision (CV). First,
[Fischler8M], provides answers at a human level of the mathematical definition is based on the properties
performance for isolated critpts (i.e., along a sec- th e ma them infinition eighb orhe aboutrthe
tion of a random curve, generated as described in of a curve in the infinitesimal neighborhood aout the
Appendix A, for which human subjects select only 61n this paper we are primarily concerned with saliency based
one critpt). Thus, for the domains we experimented on l6"1 cues; locations on a curve where there is a transition
with (and especially the domain defined in Ap- from one type of curvature behavior to another, e.g. from per-

fectly straight to "wiggley," may also be psychologically salient,

pendix A), we were able to assign fixed values to but such forms of 1lo)l saliency are beyond the scope of our cur-
scale/resolution and noise/significance parameters rent investigation.



as deviation from straightness - it is closely related so that our program would make the same selections
to proposed approximations to mathematical cur- as human subjects when there was near unanimous
vature, as illustrated in Figures 2 and 3, but has agreement among these subjects. This algorithm is
a number of advantages: it is an easily measured described in Appendix B.
quantity, even for digital curves (i.e., sequences of
coordinate pairs), and as discussed in the next sec- 2. An analysis of how geometric scaling of the in-

tion, its local extrema are in better accord with hu- put curve, and resolution specific operations on the

man preference (choices based on approximations curve, can be equated, and thus the development of

to the definition of mathematical curvature occa- a basis for normalizing criticality scores across scale.
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investigators reject the idea that any user supplied the excursion, the more prominent/salient the "fea-
parameters or thresholds should be necessary.) ture."

We have addressed the above issues through the solu- a Agreement with human judgement in terms of both
tions to a set of subproblems: selection, and accuracy of placement, of the critical

points (in some well defined context).

I. Definition of an algorithmic procedure (which is pa-

rameterized to deal with noise and scale) for assign- 4.1 A Computational Definition of
ing criticality values to each point on a curve in- Saliency
dependent of decisions made about the locations of Conventional definitions of curvature present a num-
(other) critpts. The solution to this problem, es- ber of serious problems with respect to their use as a

sentially the procedure given in Fischler and Bolles sen measure in com putato visir use Fst,
[Fischler86J, provides answers at a human level of ency measure in computational vision (CV). First,
performance for isolated critpts (i.e., along a sec- the mathematical definition is based on the properties
tion of a random curve, generated as described in of a curve in the infinitesimal neighborhood about the
Appendix A, for which human subjects select only $In this paper we are primarily concerned with saliency based
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point at which curvature is being measured. For the fi- invoke (at least) local context. For example, in Figure 3
nite precision quantized curves dealt with in CV, it has we see a case (double arrow) where two critpts were se-
been difficult to find a suitable approximation to the lected at almost adjacent locations along the curve. This
limiting process originally intended for use on mathe- undesirable behavior was not eliminated by the simple
mstically coutiiuous curves. Second, it is readily ob- "non-maximum suppression" filter that produced good
served that saliency is not an infinitesimal point prop- results in most other situations. It is necessary to use
erty, but is based on some finite extent of the curve. A more specific criteria in deciding when two critpts are
proposed solution to both problems, offered by Rosenfeld too close together, and also, what to do when the ad-
and Johnston (Rosenfeld73] was to find an appropriately jacent points have equal saliency scores (e.g., arbitrar-
sized segment of the curve about the point in question, ily eliminate one of them or eliminate both and place
and take a "snapshot" of the limiting process at this a new critpt between them). In Figure 3 we see cases
single (implied) scale. That is, rather than the rate of (two single arrows) where almost invisible features were
change of tangent angle with respect to curve length, chosen as critpts because they did have locally extreme
R/3 proposed measuring the angle between two fixed curvature scores; how do we decide when to reject such
length chords, where the lengths correspond to the com- occurances. In Figure 2 we see a case where a critpt (des-
puted "natural scale" of the curve about the given point. ignated by an arrow) was inserted at a location displaced
We will call this curvature-analog the R/J-Curvature. from the position we consider correct; this was due, in
There are a number of other definitions of mathemati- part, to the length of the arms of the angle measuring
cal curvature (e.g., the limiting radius of a circle whose "operator" relative to the size of the feature (see Figure
three defining points converge at the curve-point in ques- 2d) - it is not always possible (or practical) to find an
tion) which have analogs that could have been used in appropriate operator size for every potential feature. In
place of the angle measure in R/J-Curvature but these the following sections (and appendices) of this paper we
definitions are monotonically related, and do not really describe and justify the methods we employ to deal with
present distinct alternatives. Thus, R/J-Curvature is a these problems. The issue we are primarily concerned
suitable representative for the whole class of mathemat- with in this section is the choice of a basic saliency met-
ical curvature-measure analogs. ric. We justify our preference for the F/B-S metric on

In Fischler and Bolles [Fischler86], our concern was two grounds:
not to find a good digital analog for curvature, but rather the fixed scale mathematical (FSM) curva-
to find an effective measure of saliency. The quantity ture analogs (e.g., R/J-curvature), F/B-S rarely
defined in that paper can be viewed as a curvature- make an er i t, critp), or in ring
extremum measure in which the limiting process (in makes an error in poitioning a critpt, or in ignoring
scale) is replaced by a scanning process (in space) more a salient point that human observers would select.
appropriate to digital curves. The scanning process is The issue here is robustness, F/B-S integrates infor-
parameterized by scale, and the resulting measure is a mnation over an extended set of "looksa at the curve
signed quantity which we call F/B-Saliency (F/B-S). segment containing the point whose saliency is be-

While the particular choice of a curvature measure ing measured. FSM techniques take a single look
as a component in a complete system for selecting the at the situation. Thus, our main problem with the
most salient points (critpts) on a planar curve depends F/B-S metric is selecting the most salient of the Se-
on many factors, it is still interesting to compare the raw lected critpts to be retained as our final result (the
scores returned by curvature-analogs represented by the filtering operation generally involves the elimination
R/J-Curvature with the extreme points (ultimately) se- of less than half of the point. originally selected).
lected by our algorithm (SSS) as shown in Figures 2 and 2. The F/B-S metric is responsive to both the curva-
3 for a randomly generated curve. In these figures we ture and the size of a curve "feature." This pro-
observe problem situations that highlight some of the vides a common basis for ranking critpts at a given
differences between the two underlying metrics (R/J- scale (so that the larger of two geometrically sim-
Curvature and F/B-Saliency). 7 ilar objects is assigned a higher saliency score) as

There are some problems with any raw measure of cur- well as across scales by taking into account the size
vature that must be dealt with by using procedures that of the operator. The FSM-curvature analogs are

'In both of the figurs ,we used fixed common scale parame- insensitive to the size of the feature - they inherit
ters for both metrics as noted in the figure captions. It sheuld be the mathematical property that curvature is a point
remembered that R/J-curvature, as we define it in this paper, is property and only the smallest neighborhood about
reprementative of a whole dlas of curvature-based metrics and is
not intended to duplicate the complete RPsenfeld/Johmnton alo- a point that allows us to measure curvature is rel-
rithm - they als incorporate a procedure for finding preferred evant (this implies a single "natural scale" at any
stckllength. Hower, manyof theproblemswith theperformance point on a curve; a concept we reject, e.g., see Fig-
of the complete algorithm, which ane discussed in Davis77 and in ure 4).
other of the papers we reference, can be observed in the perfor-
ame of the R/J-Curvature metric.



4.2 Comparison of the Saliency Selection scale can be difficult to describe or measure if the mea-
System (SSS) with Human Performance surement must be referenced to the global geometry of

The primary criterion for judging the competence of the object. One of the main issues we address in this
the overall saliency selection system (SSS) we present paper is how to define extrema in the "bending" of a
in this paper is its ability to match human performance curve as a local effectively scale-invariant property that
- both in the defined task and with respect to generic is in agreement with the judgement of the human visual
evaluation of the selected critpts. We performed a set of system.
informal experiments with 11 human subjects (also see If we define criticality of points on a digitally rep-
the experiments described in Fischler86). The instruc- resented curve in terms of quantities that have dimen-
tions given to the subjects and the resulting selections sions that must be measured by some physical process,
are shown in Figure 1. We also show the selections made then there is no direct way of invoking such formally
by the SSS algorithm. The results of these (and addi- defined mathematical concepts as the derivative, or cur-
tional but not described) experiments can be summa- vature, which require limiting processes of infinite reso-
rized as follows lution. Approximations to these concepts are resolution

dependent (e.g., the size of the operator employed) and
"* At least 9 of the 11 subjects selected the same set measurements made on most objects will not "scale" in

of six or more critpts on each of the four curves we any simple or uniform way. Further, if we examine a
used in the experiments, and the SSS chose the saMe curve through a fixed size window (either a fixed region
set of critpts. Every critpt selected by the SSS was of a computer screen, or the foveal region of the hu-
also selected by at least one human subject. man retina), and we successively increase the resolution

"* In spite of the high degree of consistency in the at which the curve is displayed, some of its parts will
overall selection of salient points, the human sub- eventually disappear from view, and some of the smaller
jects differed in the order in which they chose these original structures, that were not significant, wiil now
points. We tried a number of experiments in which dominate the visible appearance of the curve (e.g., Fig-
the only difference was a very slight change in the ure 4).
wording of the instructions, and obtained different If the mathematical definition of curvature were ap-
orderings (across the same set of selected points) plicable to digital imagery, then many (but not all) of
from our subjects. It is obvious that the subjects the issues of scale could be resolved. There is still the
used a global strategy to match the task (differ- problem that a very small "glitch" can have a very high
ent for each subject) to choose the order in which value of curvature but a very low psychological signifi-
the points were selected - even though the specific cance. Thus the scale or size of a "feature" (e.g., the
points selected were largely determined by local con- glitch) is an issue. The term "feature" does not appear
text. in our problem definition; in fact, by focusing on local

curve properties, we had hoped to eliminate the need to
In addition to the curves used in the human experi- invoke this concept since an appropriate definition is far

ments, we ran the SSS algorithm on (the order of) 1000 from obvious. a Since scale can't be ignored (even if
randomly generated curves with no obvious errors. Fig- we had a good approximation for curvature in the digi-
ure 5 shows the results of a (typical) sequence of 40 con- tal domain that was independent of scale) the following
secutive experiments. questions arise:

• The distinction, if any, between resolution and scale5. Dealin• with the Problems of Scale

and Resolution * How to choose a range of scales appropriate to the

A vision system, concerned with creating a descrip- specified performance criteria
tion of some object that may be encountered again in • How to measure criticality at different scales
the future, perhaps when the object is closer or furtheraway, must take scale or magnification into account when • How to compare criticality values computed at dif-

deciding what shape elements to pay attention to. Un-
der extreme changes in resolution, when salient features * The relationship between smoothing and scale
might appear or disappear, it may not be possible to change
make an informed judgement in the assignment of rela- $ sections of any given curve that we
tive saliency scores; but for a limited range about a given feat; these entities provide the psychological basis for the se-
resolution, this should indeed be possible. laction and relative saliency of the associated critpts. Critpts are

Obviously, geometric properties of objects that are in- markers that define the shape and boundary of features - the ex-
variant over scale are especially valuable in describing tent of the curve corresponding to a feature will generally sub-

sume the "region of support" for the curvepoints comprising theand recognizing the objects, since absolute scale is of- feature. Features can overlap, and their boundaries are not always
ten impossible to judge in an image, and even relative apparent.



* The relation between operator size and scale change unaltered under a scale change). It will be the case,

* Rhowever, that for smooth curves, the local extrema will

how cooperation/competition be found at corresponding locations - but even here, theacros sclesnumerical values of curvature will not scale in any simple

e How to determine the features for which we ex- way (curvature is a nonlinear function).
pect consistency (of criticality scores) to hold across 5.2 SSS Mechanisms fo.- Evaluating
scales, and where such consistency can't be expected Saliency at Different Scales and Resolu-

(if the latter were never the case, we could always do tions
" our analysis at one scale and compute the criticality In designing a computational module to evaluate

values at other scales as needed). saliency subject to the ideas discussed above, we can

While consistency at all scales and for all features is pursue at least three distinct strategies:
not possible, over some range of scales (say 5:1) we ex-
pect there to be a "normalization" factor which allows 1. Assume that saliency is independent of scale, or that
us to compare the saliency scores computed at one scale there is a natural scale associated with each location
with values computed at other scales. We would also on the curve that must be discovered.
expect that relative locations of local extrema for cer-
tain features would remain fixed as a curve is scaled, 2. Use a fixed scale saliency measure, but generateU regardless of the size/scale of the operator that assigns multiple versions of the given curve at some pre-
the criticality scores. determined set of scales.

Some of the earliest work (e.g., Rosenfeld and John-
ston) on fincing salient points merged the problem of 3. Parameterize the saliency measure to give results
assigning a curvature measure to a point with that of de- approximating those that would be obtained from
termining the scale at which to measure curvature. The strategy (2) for the selected scales.
key idea is that each point has a single scale at which
its curvature should be measured - this scale is usually We previously argued against strategy (1) on the as-
found by a search process over successively larger scales sumption that a unique natural scale cannot generally
until some measured quantity achieves a local extremum. be associated with a single curvepoint (see Figure 4).

We have chosen strategy (3) since strategies (2) and (3)
"5.1 Change of Scale Vs. Change of Res- are conceptually compatible, but (3) could be compu-

olution tationally more efficient if we can find a simple way to

If we magnify a continuous curve that was originally use some combination of operator scaling and score nor-
represented at infinite precision, every point of the new malization so that both approaches give (nominally) the
image corresponds to a point in the original image, but same scores in most situations. Intuitively, doubling the
its x and y coordinate values have been multiplied by stick length (in the F/B-S metric) for a simple convexI some real number which we will call the scale factor. section of a curve should result in four times the score
No information was introduced nor lost, but the phys- assigned to the corresponding critpt: The stick is now
ical space required to render the curve has increased, positioned twice the distance from the critpt in most of
However, if the original curve was represented at finite its "rloks" (i.e., placements of the stick which subsume
resolution (e.g., each point as a pair of integer coordi- a curve segment containing the critpt), and there are
nates), then (say) doubling the scale leaves us with a twice as many looks. Thus, the procedure we employ,
disconnected set of points. Filling in the gaps requires normalizing all scores by divding by the square of theI introducing new information. Here we will say that a sticklength, will leave invariant the saliency scores as-
change of resolution has occurred (a change in resolu- signed to features which should be scale invariant, such
tion can also result in the loss of information, as in the as the angle formed by two (effectively) infinite straightI case of demagnification or smoothing at some fixed reso- lines. On the other hand, for those features that have
lution). Thus, the concept of a scale change corresponds limited extent along the curve, comparable to the scales
to a reversible transformation, while, in general, a change we wish to discriminate among, the larger scaled versions
in resolution involves an irreversible process in which in- of the features will be assigned higher scores.
formation is lost (as in smoothing), or new information
is introduced (as can occur in zooming).

If we compute the curvature for points on a continuous 6. Cooperation/Competition Interac-
(infinite resolution) curve at two different scales, we will tions Between Critical Points
generally get two distinct sets of values (e.g., a circle An important contribution of this paper over the work
with radius 2 is a scaled version of a circle with radius presented in Fischler and Bolles [Fischler86] is a major
1, but by definition, their curvatures are in the ratio revision of the approach to filtering the critpts, based
1:2. On the other hand, the angles of a triangle remain both on comparisons at a given scale as well as acrosshadInls tinl
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different scales. At a conceptual level, there are two main existing value stored in the slot to capture it. If a new
differences. critpt captures a slot occupied by (as opposed to sim-

First, in the earlier work we did not use the informa- ply being owned by) a previously dominant critpt, all of
tion about the sign (concavity/convexity) of the com- the slots of the now dominated critpt are also captured.
puted F/B-Saliency; in our current algorithm, we sepa- This mechanism provides a way of avoiding the need to
rate all the candidate critpts into two sets correspond- choose a fixed-sized "base of support" for a critpt.
ing to positive and negative F/B-S. 9 These two sets
are processed independently of each other (by identical 7. Algorithm Performance

" procedures) and the resulting selections are combined by
logical union to produce the final output. Our own obser- The algorithm discussed in the previous sections of
vations confirm those of other researchers (e.g., Hoffman this paper, and described in Appendix B, has been corn-

"and Richards), that positive and negative curvature ex- pared with human performance (Figure 1), and has been

trema appear to be distinguished from each other by the run on hundreds of randomly generated images (as de-
HVS, in part because they play different roles in parti- scribed in Appendix A) without making any obvious er-

tioning and description tasks. rors. In all these cases the same set of parameters were

Second, in the earlier work we used a simple "domi- used with no operator involvement. Figure 5 shows 40

nance" criterion for competition of closely spaced critpts consecutively generated random curves and the critpts

detected at different scales.. A critpt detected at some selected by the algorithm. Figure 6 in Appendix C shows

given scale would suppress all critpts detected at smaller results of the algorithm run on curves extracted from real
scales (shorter "sticklength") that were located withina images.
specified scale related distance from it. This rule rarely
produced "ugly' errors, but occasionally caused the ob- S. Discussion
viously correct critpt to be deleted in favor of one slightly Curve partitioning is an active research area which
displaced from the preferred location. A significant por- not only is of theoretical interest as a basic element in
tion of the work described in this paper has been fo- pictorial description (e.g., Attneave, B-ngtsson and Ek-
cused on finding a more effective and uniform basis for lundh, Hoffman and Richards), and for providing insight
establishing "local dominance." In other sections of this into the partitioning problem in general (e.g., Fischler
paper we provided a justification for a normalization fac- and Bolles), but has many potential applications. Some
tor which would permit us to assign a saliency ranking of the more immediate ones include: data compression
to competing critpts, regardless of the scale at which by using critpts as the basis for regenerating a curve
they were originally detected. Thus, competition, both by straight line or spline interpolation (e.g. Imai and
within and across different scales is now treated in a Iri, Teh and Chin), matching/recognition using critpts
uniform manner. In the following subsection we discuss and/or the partitioned curve segments (e.g., Mokhtar-
some of the specific problems that must be resolved in ian and Mackworth, Wuescher and Boyer), and as a key
competition resolution, and the algorithmic procedures component of an interface for man-machine communi-
we invoke to deal with these problems. cation about pictorial objects (the ability to point at

6.1 Mechanisms for Filtering Competing icons representing symbolic objects has revolutionized
S Critpts the computer-user interface; to extend this capability,

one would like to be able to point to a location in an
One of the algorithmic mechanisms we devised to deal image and have the machine be able to deduce the com-with the above problems (described in greater detail in nent being referred to - image partitioning in gen-

Appendix B) is to construct an array with one slot for eral, and especially curve partitioning, are critical to this
each indexed location along the curve (conceptually two goal).
such arrays, one each respectively for positive and nega- In this paper we have focused on one specific aspect
tive saliency scores). Each slot is either free or "owned" of the curve partitioning problem: Duplicating human
by exactly one critpt. A critpt occupies only one of the performance in the selection of absmall number of points
slots it owns - this occupied slot corresponds to its actual pfa ne in the slon o a smanu of pnlocation along the curve. A "new" critpt, 10 contending used as the basis for recoa tructing the curve at some
for a slot, must have a normalized score greater than the future time. While there will generally be a significant

$For an open cur" segment, the assignment of poitives. ne- degree of overlap in the points selected by the tech-
ative is arbitrary; the important -onsideration is that we use the niques referenced above (focused on different applica-
information about the direction of devi!tion of the curve f-om the tions), there are also significant differences. There has
stick to separate detected critpts into the two possible categories been very little recent work on the generic problem ofwhich we. then processed ,epuanely. choosing psychologically salient points with which to di-

l°AUl the potentia critpts wre detected, sorted, and then enteredinto the array in increasing order of saliency to avoid sequence rectly compare our results. On the other hand, we have

dependent efects. conducted a relatively large number of experiments with

I
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uniformly good results (e.g., see Figure 5). Our approach to local saliency selection can be con-

There are two major paradigms 11 underlying the pub- sidered a form of automated preattentive perception.
lished work on partitioning planar curves. The first in- Potential extensions could include dealing with more
volves obtaining a mathematically differentiable repre- global curve features, such as recognizing the intersec-I sentation of the given digital curve by the use of splin- tion of extended straight line segments, or transition
ing or Gaussian convolution (e.g., Mokhtarian86). This points between analytic curves with different parame-
gives good results for many applications, but the salient ters, or global symmetries and repeated structure. Rec-
points on the smoothed curve are often displaced from ognizing these more global structures, and ranking them

" their original locations (or eliminated). This paradigm with respect to human perceived saliency, may well fall
is not suitable for our purposes in this paper. outside the competence of the basic approach described

The second paradigm, which includes the work de- in this paper.
"* scribed here, is to first measure some approximation to

the curvature at each point on a curve. This usually in- 9. Appendices
volves choosing, or finding, an appropriate scale at whichI to make the curvature measurement. This is typically ac- 9.1 Appendix A: Generation of Random
complished by making the curvature measurement over Curves
increasingly larger curve segments (centered on the curve The following method was used to construct the ran-
point being evaluated) until either the computed curva- dom curves used in the experiments described in the
ture at the point, or some related quantity, reaches al body of thise ine es
cal extrema. Each point is assigned a saliency/criticality (1) Thirty (x,y) pairs are generated for each curve.
value (its estimated curvature) and an interval length Each value of x and y are generated by a uniform-

* along the curve centered on the point (called its re- Eashivuie(0-1) random-number generator and then
gion of support). The region of support is then used fo distribution b0. to r odoc-number (oordate-
non-maximum suppression - each point suppresses other multiplied by i00 to produce numbers (coordinate-
points with lower criticality scores falling in its region of values) uniformly distributed between 0 and 100.* support. (2) The thirty points are next linked by a minimal-
uMajor differences between our approach and other spanning-tree (MST).

w ajork udierethis s etwend pa rapradm ic de o(3) A diameter path is extracted from the MST, andwork under this second paradigm include: the ordered subset of the original randomly generated

o A generic saliency measure which often selects points that fall along this diameter path are the input
point correrispdiengto local curvature extrema, sequence provided to a spline-fitting routine (Cline74]
points corresponding to is in ettrea, which returns a continuous curve represented by a se-

uwhith humn - yselec tion s preferene and p mentt ac-d quence of (x,y) coordinate pairs. These sequences, typ-with human selection preference and placement ac- ically containing on the order of 150-250 points, are thecuracy, random curves used in our experiments.

I A distinct approach to the problem of dealing with 9.2 Appendix B: An Algorithm For
curve features salient at different scales. The con- Computing Curve-Point Criticality
ventional approach is to associate a single scale with The partitioning algorithm described in Fischler and
each curve point which in turn defines a fixed re- Bolles [Fischler86] has been modified and extended as
gion of support to be used for non-maximum sup- summarized below.
pression. In our approach, we measure the saliency The algorithm collects candidates (peaks) for the crit-
of each curve point at a number of different scales, ical points of a curve by examining the deviation of the
and have developed procedures for allowing poten- points of the curve from a chord or "stick" that is it-
tial critpts, found at different scales and spatial loca- eratively advanced along the curve. Sticks of different
tions to compete 12 with each other. This competi- lengths are used to find critical points that are salient
tion is not restricted to any fixed extent of the curve at different "natural" scales on the given curve. (Except
(which thus avoids anomalous selections caused by when explicitly stated otherwise, two sticks were used
an important event occurring just beyond the fixed for all the experiments discussed in this paper; one of
limit of search, i.e., the horizon effect). length 10 pixels and the other of length 20 pixels.) The

""IAdditlonal approaches are available for partitioning I-D algorithm provides the option of using arc-length along
curves; for example, see Fischler and Wolf (Fischler$3] or Witkin the curve, or the euclidean length of the stick, to de-
[Witking3j. As noted in Appendix B, the I-D partitioning tech- termine the separation of the endpoints of the stick on
nique in the Fischler83 reference is used as a component of the SSS the curve; we used the euclidean length of the stick for
algorithm. all of the experiments discussed in this paper. One end121It is interesting to note that we have not found a use for coop..

erative reinforcement - cooperation appears to be a global relation, of the stick is advanced along the curve, one pixel at a
Competitionis important athe local level (e.g., ateral inhibition) time, and the other end is placed at the first (sequential)



I
position further along the curve for which the Euclidean the INDEX for a peak that was entered previously, the
distance equals or exceeds the specified stick length. support information for the new peak replaces the supw

For each placement of the stick, an accumulator asso- port information of the old peak wherever it occurs in
ciated with the curve-point (in the interval of the curve the support array (i.e. even outside of the new peak'sI between the two endpoints of the stick) of maximum original support region).
deviation from the stick is incremented by the absolute After the above processing, the critical points for the
value of the distance from the point to the stick if this curve are designated as those points whose index into the
distance exceeds a predefined noise threshold. However, support array equals the index stored in the information

" for the given stick placement, if there is more than one list of the array element.
excursion (exit and return) outside the noise region, the It can be seen that the order in which peaks are en-
underlying model is violated and the accumulators are tered into the support array can affect the final selection

" not incremented. (The noise threshold was uniformly of the critical points because a peak's region of support
set to 20 percent of stick length; thus a euclidean devi- can be altered by the "capture" process, and thus de-
ation of more than 2 "pixels" from a stick of length 10 pends on the state of the support array at the time theI was required to cause any modification of the associated peak is entered. In our implementation of the algorithm
accumulator.) for running the experiments, we entered the peaks into

To deal with direction dependent effects, a complete the support array as soon as they were computed in or-I traverse is made in both directions along the curve sum- der to gain computational efficiency and simplicity, and
ming the results in the same accumulators. The points still obtained excellent results. In the current version of
which have locally maximum scores in the accumulators the algorithm we collect all the peaks for all the sticks,
(called peaks) for any of a given set of sticks are the sort the peaks by their normalized scores, and then enterI points from which the critical points will be selected. them into the support array in order of increasing score.

The following information is collected for each peak There are some additional aspects of the algorithm
and used to find the critical points: that are further discussed in the more complete version

* INDEX: the sequence number along the curve of the of this paper, including ways to handle problems aso-

point at which the peak was located. ciated with very sharp angles and competing critpts of
approximately equal saliency scores,

* STICK: the length of the stick (in pixels) used to
find the peak. 9.3 Appendix C: Partitioning Curves

Extracted From Aerial Imagery
r DEV: the sign of the deviation of the peak with A technique for detecting and delineating low resolu-
Srespect to the curve. tion linear structures appearing in aerial imagery, such as

* NSCORE: the "normalized" score which is the score roads and rivers, was described by the authors of this pa-
in the accumulator for the peak divided by the per in an earlier publication [Fischler83]. The algorithm
square of the stick length, was effective in finding such structure, but it provided no

mechanism for distinguishing between the semantically
The peaks are divided into two groups with like-signed meaningful objects and the "accidental" and irrelevantE deviation DEV. The critical points for the two groups linear features found in most real images. In work now in

are found independently of each other and their union is progress, we use the SSS algorithm to "slice up" the in-
returned as the set of critical points for the curve. dividual curves found by the delineation algorithm. We

In finding the critical points, we stipulate that each throw away the very small resulting segments which areI peak's score has a region of support, plus and minus half typical of accidental linear formations, and then further
its associated stick length, on each side of its position filter the longer segments with respect to a set of seman-
along the curve. An array (the support array) equal to tic constraints. Those segments that pass through theI the length of the curve is used to store the support in- filtering process are then "glued" back together to pro-
formation. The support information for a peak is a list duce the desired delineation. This process is illustrated
(NSCORE INDEX STICK). For each peak, the support in Figure 6. Figure 6a shows an aerial image, and 6b
information may be entered at every index location coy- shows the linear segments extracted by use of the orig-
ered by the region of support depending on what was inal delineation algorithm. Figure 6c shows those seg-
p suport ted -
previously stored in the location. ments that passed through the filters mentioned above,For all locations in the support region for the new and Figure 6d shows the result of a final step to retain

I peak (in the support array), an entry at J is replaced by only the more significant roads and trails. The two panes
the information for the new peak if there is no previous of Figure 6e show the results of applying the SSS algo-
entry in the array or if the score for the new peak is rithm to some of the 120 curves highlighted in FigureI> than the score in the existing entry in the array. In 6b (they have been isolated and separated into the two
addition, if the entry J is being replaced, and J is also panes to allow clear display of the partition points and



l
to prevent confusion due to the intersections of distinct 13. F. Mokhtarian and A. Mackworth, "Scale-based de-U curves). The robustness of the SSS algoritmn is essential scription and recognition of planar curves and two-
in carrying out the filtering operation. Insertion of extra- dimensional shapes," IEEE PAMI 8(l):34-43, Jan
neous partition points would cause the lo of portions 1986.
of the road network; absence of valid partition points
would allow meaningless appendages to become part of 14. T. Pavlidis and S.L. Horowitz, "Segmentation of

the extracted network. plane curves," IEEE Trans. Comput. C-23:860-870,
Aug. 1974.

. 10. References 15. W. Richards and D. Hoffman, "Codon constraints
on closed 2D shapes," in Human and Machine Vi-

1. F. Attneave, "Some informational aspects of visual sion II (A. Rosenfeld, ed.), Academic Press, pp 207-

perception, "Psychol. Rev. 61:183-193,1954. 223, 1986.

2. A. Benugoon and J.O. Eklundh, "Shape Repre- 16. W. Richards, B. Dawson,, and D. Whittington, "J.

sentation by Multiscale Contour Approximation," Optical Soc. Amer. 3(9):1483-1491, Sept. 1986.

IEEE Trans PAMI-13(1):85-93, Jan. 1991. 17. A. Rosenfeld and E. Johnston, "Angle detection in

3. A.K. Cline, "Scalar- and planar- valued curve fitting digital curves," IEEE Trans. Comput. C-22:875-

using splines under tension," CACM 17(4):218-223, 878, 1973.

April 1974. 18. A. Rosenfeld and J.S. Weszka, "An improved

4. L.S. Davis, "Understanding shape: angles and method of angle detection on digital curves." IEEE

sides," IEEE Trans. Comput. C-26:236-242, March Trans. Comput. C-24:940-941, Sept. 1975.

1977. 19. C.H. Teh and R.T. Chin, "On the detection of dom-
.M.A. Fischler and R.C. Bolles, "Perceptual organi- inant points on digital curves," IEEE Trans PAMI-
zation and curve partitioning," IEEE Trans PAMI- 11(8):859-872, Aug. 1989.

8(1):100-105, Jan. 1986. 20. A. Witkin, "Scale Space Filtering," Proc. 8th IJ-
6. MA. Fischler and H.C. Wolf, "Linear Delineation," CAI, Karlsruhe, West Germany, pp 1019-1022, Aug.

Proceedings IEEE CVPR-83, June 1983, pp 351-

356; also, Readings in Computer Vision (M.A. Fis- 21. D.M. Wuescher and K.L. Boyer, "Robust contour
chler and 0. firschein, eds.), Morgan Kaufmann, pp decomposition using a constant curvature crite-
204-209, 1987. rion," IEEE Trans PAMI-13(1):41-5I Tan. 1991.

7. MA. Fischler and P. Barrett, "An iconic transform
for sketch completion and shape abstraction," CGIP
13:334-360, 1980.

8. D. Hilbert and S. Cohen-Voeasen, "Geometry and the
imagination." Chelsea, 1952.

9. D.D. Hoffman and W.A. Richards, "Representing
smooth plane curves for recognition: implications
for figure-round reversal," Proc. 2nd Nat. Conf.
Artificial Intelligence, Pittsburg, PA, pp 5-8, Aug.

1982.

10. H. Imai and M. Iri, "Computational-geometric
methods for polygonal approximations of a curve,"
CVGIP-38(1):31-34, Oct. 1986.

11. D.G. Lowe, "Organization of smooth image curves
at multiple scales," Proc 2nd ICCV, pp. 558-567,

3 1988.

12. R. Mehrotra, S. Nichani, and N.
Ranganathan, "Corner detection," Pattern Recog-
nition 23(11):1223-1233, 1990.

I



CURVE PARTITIONING: Instructions

U. For each enclosed curve:
m Assume that 10 years from now you will be asked to reconstruct the given curve.

A reasonably correct reconstruction will be rewarded by a large sum of money (say
$5000). You can record, for later use, the locations of up to nine points along the
curve to help you do the reconstruction - but it will cost you $200 for each such
point (to be subtracted from your prize if you receive the reward). Please mark your
selected points on the curve. Do not select the endpoints, they will be provided free.
Do not take more than one minute per curve.

I

Points chosen by 9 of 11 test subjectsI

I

N Critical points found by the SSS algorithm

I

Points chosen by at least 1 of 11 test subjects

Figure 1: Comparison of human and SSS algorithm performance in the curve
partitioning task. (Each of the curves used in the experiments with human
subjects was contained in a square that was 1.5 inches on a side.)
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(e) Plot of R/J-cuvaure along test curve. Abcissa = sequence number of point on curve.
Ordinate =f angle (in degrees) computed at point. (Angle-arms are 10 units each for

R/J-C; standard stick lengths of 10 and 20 units are employed by SSS.)

Figure 2: Comparison of SSS and R/J-curvature metrics evaluated on test curve 189.
The continuous curve in (e) represents R/J-curvature along the test curve shown in (a).
The vertical lines in (e) mark the sequentially numbered critpts selected by SSS as shown
in (b). The critpts corresponding to the extreme values of R/J-curvature shown in (c)
are marked as circles in (e). The arrow in (c), and in the corresponding location in (e),
illustrates an anomalous selection using R/J-curvature. (d) shows the computed values of
R/J-curvature, 153, at the preferred location and 122" at the location of the anomalousI selection.I
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(d) Plot of R/J-curvature along test curve. Abcissa =sequence number of point on curve.
Ordinate -- angle (in degrees) computed at point. (Angle-arms are 10 units each for
R/J-C; stick length is 20 units for F/B-S.)

Figure 3: Comparison of $SS and R/J-curvature metrics evaluated on test curve 166.
The continuous curve in (d) represents R/J-curvature along the test curve shown in (a).
The vertical lines in (d) mark the sequentially numbered critpts selected by SSS as shown
in (b). The critpts corresponding to the extreme values of R/J-curvature shown in (c)
are marked as circles in (d). The arrows in (c), and in the corresponding locations in(d), Teustra e 1( anomalous selections using R/J-curvature.
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Figure 4: Curvature and saliency are functions of curve resolution. As illustrated in (a)
above, we can draw more than one visually acceptable tangent to many of the points on this
curve at the given resolution. As resolution increases, tangent 2 would dominate at point x;I as resolution decreases, tangent 1 would dominate at the same point. In (b), the angle at x
can be seen as 450 at one scale and 90* at a larger scale. Thus, curvature and saliency are
not unique properties of curve points.

I

I

i Figure 5: Critical points found by the SSS algorithm for a set of 40 random curves.
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(a) Aerial photograph (b) Initial extraction of
linear structure

i

(c) Filtered linear structure (d) Delineation of majorUusing SSS algorithm roads and trails

i

I (e) Partition points found by SSS algorithm on curves from (b)

I Figure 6: Application of the SSS algorithm to the problem of delineating linear features in
aerial photographs.
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Abstract developing general-purpose vision systems, but
also in specialized areas such as the generation

Our goal is to reconstruct both the shape and re- of Digital Elevation Models from aerial images
flectance properties of surfaces from multiple images. [5, 12, 26, 53].
We argue that an object-centered representation In this paper, we view the recovery problem
most appropriate for this purpose because it natu- as one of finding an object-centered description
rally accomodates multiple sources of data, multiple of a surface from a set of input images that is
images (including motion sequences of a rigid ob- sufficiently complete, in terms of its geometric
ject), and self-occlusions. We then present a qpe- and radiometric properties, that it is possible
cific object-centered reconstruction method and its to generate an image of the surface from any
implementation. The method begins with an ini- viewpoint. In particular, the description should
tial estimate of surface shape (provided by trian- be sufficiently complete to reproduce the input
gulating the result of conventional stereo or other images to within a certain tolerance, given mod-
means). The surface shape and reflectance prop- els of the cameras, their relative locations, and
erties are then iteratively adjusted to minimize an
objective function that combines information from
multiple input images. The objective function is a Our surface reconstruction method uses an

weighted sum of "stereo," shading, and smoothness object-centered representation, specifically, a
components, where the weight varies over the sur- triangulated 3-D mesh of vertices. Such a rep-

face. For example, the stereo component is weighted resentation accommodates the two classes of
more strongly where the surface projects onto highly information mentioned above, as well as mul-

textured areas in the images, and less strongly oth- tiple images (including motion sequences of

erwise. Thus, each component has its greatest in- a rigid object) and self-occlusions. We have

fluence where its accuracy is likely to be greatest. chosen to model the surface material using

Experimental results on both synthetic and real im- the Lambertian reflectance model with variable

ages are presented. albedo, though generalizations to specular sur-
faces would be relatively straightforward. Con-
sequently, the natural choice for the monocular

1 Introduction information source is shading, while intensity is
the natural choice for the image feature used

The problem of recovering the shape and re- in multi-image correspondence. Not only are
flectance properties of a surface from multi- these the natural choices given a Lambertian
pie images has received considerable attention reflectance model, they are also complementary
[6, 20, 35, 44]. This is a key problem not only in [7, 30]: intensity correlation is most accurate

* Support for this research was provided in part by weee h nu mgsaehgl etrdwherever the input images are highly textured,

various contracts from the Advanced Research Projects whereas shading is most accurate when the in-
Ageacy. put images are untextured.



The reconstruction method is to minimize information fusion.
an objective function whose components de- More recently, full 3-dimensional models have
pend on the input images and some measure of been used, such as 3-D surface meshes (46, 49],
the complexity of the 3-D mesh. The method parameterized surfaces [40, 33], particle systems
starts with an initial estimate for the mesh [42, 17], and volumetric models [36, 45, 37].
derived from the triangulation of conventional As with the 21--dimensional representations,I2
stereo results, and uses a standard optimization 3-D representations have used a variety of sin-
technique called conjugate gradient descent to gle image cues for reconstruction, such as sil-
minimize the objective function. The image- houettes and image features [9, 11, 47, 48, 50],
dependent components of the objective func- range data [51], stereo [17], and motion [41].
tion are related to the two sources of informa- Liedtke[32] first uses silhouettes to derive an
tion mentioned above. We take advantage of initial estimate of the surface, and then uses
the complementary nature of the information a multi-image stereo algorithm to improve on
sources by weighting the components at each the result. Their approach to deriving an ini-
facet of the triangulated mesh according to the tial estimate for the mesh, as with Szeliski and
amount of texturing within the area of the im- Tonneson's approach [42], is significantly more

ages that the facet projects to. The projection powerful than the one we use in this paper. This
uses a hidden-surface algorithm to take occlu- is an important topic for future research.
sions into account. Of special relevance to this paper is research

In the following section, we describe related in combining stereo and shape from shading.
work and our contributions in this area. Fol- Using 21A-dimensional representations, Blake et
lowing this we discuss some of the key issues al. [7] is the earliest reference we are aware
in multi-image surface reconstruction and how of that discusses the complementary nature of
to combine different sources of information for stereo and shape from shading, but their exper-
such purposes. We then describe in detail our imental results are almost non-existent in this
specific procedure, discuss the behavior of our paper. Leclerc and Bobick [31] discuss the in-
procedure on synthetic data, and show some re- tegration of stereo and shape from shading, but
suits on real images. only use stereo as an initial condition to a dis-

crete height from shading algorithm. Cryer et
aC. [10] combine the high-frequency information

2 Related Work and Contri- from a shape from shading algorithm with the
butions low-frequency information from a stereo algo-

rithm using filters designed to match those in
Three-dimensional reconstruction of visible sur- the human visual system.

faces continues to be an important goal Using full 3-D representations, Heipke [22]
of the computer vision research community. integrates the two cues, but assumes that the
Initially, much of the work concentrated images can be separated beforehand into zones
on 212-dimensional image-centered reconstruc- of variable albedo (where one does stereo) and
tions, such as Barrow and Tenenbaum's Intrin- areas of constant albedo (where one does shape
sic Images [6] and Marr's 21 -D Sketch [35]. from shading). This is in contrast to our ap-
These preliminary ideas have been the basis for proach, in which the optimization procedure dy-

I quite successful systems for recovering shape namically adapts to the image data.
and surface properties. Some have used sin- In this paper, we unify the idea of using 3-D
gle sources of information, such as sequences of meshes to integrate information from multiple
range data or intensity images [3, 25], stereo images with that of using multiple cues. Our
[12, 26, 52, 53], and shading [21, 24, 44]. Oth- specific approach to this unification, has led to
ers have combined sources of information, such a number of important contributions:
as shading and texture [8], features and stereo
[23], focus, vergence, stereo, and camera cali- 9 We correctly deal with occlusions by using
bration [1]. See [2] for further discussions on a hidden surface algorithm during the re-



construction process. There are marty object-centered surface rep-
resentations that are possible. However, there

"* Our technique for doing stereo avoids the resenpati cal issues thtrt
consant ept assmpton o trditinal are some practical issues that are important in

constant depth assumption of tradiitional choosing an appropriate one. First, the repre-
correlation-based stereo algorithms, effec- sentation should be general-purpose in the sense
tively using variable-sized windows in the that it should be possible to represent any con-
images. tinuous surface, closed or open, and of arbitrary

"* Our approach to shape from shading is genus. Second, it should be relatively straight-

applicable to surfaces with slowly varying forward to generate an instance of a surface

albedo. This is a significant advance o'~er from standard data sets such as depth maps or

traditional approaches that require con- clouds of points. Finally, there should be a com-

stant albedo. putationally simple correspondence between the
parameters specifying the surface and the actual

"* We propose a dynamic weighting scheme 3-D shape of the surface, so that images of the
for combining shape from shading and surface can be easily generated, thereby allow-
stereo, and demonstrate that it leads to sig- ing the integration of information from multiple
nificantly better results than using either images.
cue alone using both synthetic and real im- A hexagonally connected mesh of 3-D ver-
ages. tices, as in Figure 2, is an example of a surface

representation that meets the criteria stated
To demonstrate the validity of the overall ap- above, and is the one we have chosen for this pa-
proach, we have implemented a computation- per. Such a mesh defines a surface composed of
ally effective optimization procedure, and have three-sided planar polygons that we call trian-

demonstrated that it finds good minima of the gular facets, or simply facets. Triangular facets

objective function on both synthetic and real ar particulr sy to m ani ulat fage
images.are particularly easy to manipulate for image

images" and shadow generation, since they are the ba-

sis for many 3-D graphics systems. Hexagonal

3 Issues in Multi-Image Sur- meshes can be used to construct virtually arbi-

face Reconstruction trary surfaces. Finally, standard triangulation
algorithms can be used to generate such a sur-

In this section, we briefly discuss some of the key face representation from real noisy data [18, 421.

issues in multi-image surface reconstructions,
and outline how we address the issues in this 3.2 Material Properties and their
paper. These outlines will be expanded upon in Representation
Section 4.

Objects in the world are composed of many

3.1 Surface Shape and its Represen- types of material, and the material type can

tation vary across the object's surface in many ways.
The key issues, therefore, are the type of mate-

Since the task is to reconstruct a surface from rial we wish to consider, and how its variation
multiple images whose vantage points may be across the surface is to be represented. In gen-
very different, we need a surface representation eral, one can represent a material type by its re-
that can be used to generate images of the sur- flectance function, which maps the wavelength
face from arbitrary viewpoints, taking into ac- distribution and orientation of a light source,
count self-occlusion, self-shadowing, and other the normal to the surface, and the viewiig di-
viewpoint-dependent effects. Clearly, a single rection into an image color. This function is
image-centered representation, such as a depth generally quite complex. However, there are re-
map, is inadequate for this purpose. Instead, flectance functions that are not only much sim-
an object-centered surface representation is re- pler, but are also quite common. Such functions
quired. are modeled using only one, or, at most, a few,



parameters. Consequently, one can accurately resentation, however, we can do certain things
model the material properties of a surface by that cannot be done with a single image. First,
representing these parameters at every point on the information source can be checked for con-
the surface. sistency across all images, taking into account

Probably the simplest, and most common, occlusions. Second, the information can be "av-
such function is the Lambertian reflectance eraged" over all the images, when the source
function. For grey-level images, this function is consistent and occlusions are taken into ac-
not only has a single parameter, albedo, which count, to increase its sensitivity.
is the ratio of incoming to outgoing light in- The second class are those information
tensity, but the image intensity is independent sources that require at least two images, suchI.of viewpoint. For this reason, we have chosen as the triangulation of corresponding points be-
to restrict ourselves to Lambertian surfaces in tween input images (given camera models and
this paper. However, because we use a full 3- their relative positions). Generally speaking,
D representation, a generalization to specular this source is most useful when corresponding
surfaces would be fairly straightforward. points can be easily identified, and their image

Having chosen a specific reflectance function, positions accurately measured. The ease and

the remaining issue is how to represent the accuracy of this correspondence can vary sig-
spatially-varying parameter(s). In general, one nificantly from place to place in the image set,
needs to be able to represent independent pa- and depends critically on the type of feature
rameter values at every point of the surface. In used. Consequently, whatever the type of fea-
terms of the mesh representation of the surface, ture used, one must be able to identify where in
this implies some type of spatial sampling of the images that feature provides reliable corre-
each facet. Given the finite resolution of the spondences, and what accuracy one can expect.
images, and other practical considerations, we The image feature that we have chosen for
have chosen to use two types of spatial sam- correspondence (though it is by no means the
pling. The first is most appropriate when the only one possible) is simply intensity, because
parameters vary quickly across the surface, and the Lambertian reflectance model described ear-
the second when they vary more slowly. For lier implies that the image intensity of a surface
the former case, we use a uniform sampling of poli, is independent of the viewing direction.
each facet, where the inter-sample spacing cor- Therefore, corresponding points should have the
responds roughly to no more than one or two same intensity in all images. Clearly, intensity
pixels iD any of the images. For the later case, can only be a reliable feature when the albedo
we use a single value associated with each facet. varies quickly enough on the surface (and, con-

As we shall see later, the two different repre- sequently, the images are highly textured), and
sentations are used somewhat differently, and the search space is sufficiently narrow. Other-
the choice of which representation to use is wise, there would be significant ambiguity in the
made on a facet-by-facet basis as a function of correspondence of pixels across the images.

the images. In contrast to our approach traditional
correlation-based stereo methods use fixed-size

3.3 Information Sources for Recon- windows in images, which can only yield correct

struction results when the surface is tangential to the im-
age plane. Instead, we compare the intensities

There are a number of information sources that as projected onto the facets of the surface, which
are available for the reconstruction of a surface is equivalent to having variabl-shaped windows
and its material properties. Here, we consider in the images. Consequently, if the original sur-
two classes of information, face is well modeled by a mesh surface, the re-

The first class are those information sources construction can be significantly more accurate.
that require a single image, such as texture gra- The Hierarchical Warp Stereo System [39] is an-
dients, shading, and occlusion edges. When us- other example of a method that takes into ac-3 ing multiple images and a full 3-D surface rep- count the variable shapes of windows required

I



5for accurate reconstruction of a surface, though 3.4 Combining and Using Informa-
it uses only an image-centered representation of tion Sourcest the surface.

Simply put, our approach to surface reconstruc-

tion is to adjust the parameters of the surface
As for the monocular information source, we (in the case of the mesh, this means the coor-

have chosen to use shading. There are a number dinates of the vertices), until the images of the
of reasons for this. First, we are using a Lam- surface are most consistent with the informa-
bertian reflectance model, making shading a rel- tion sources described above. This approach re-
atively simple source of information. Second, quires a number of things. First, one must have
shading is most reliable when the albedo varies an initial estimate of the surface. In this pa-
" slowly across the surface, which is the natural per, this is derived from a standard correlation-
complement to intensity correspondence, which based stereo algorithm. Second, one must know
requires quickly varying albedo. The comple- the light source direction, camera models, and
mentary nature of these two sources should al- their relative positions so that images of the sur-
low us to accurately recover the surface geom- face can be generated (we assume these are pro-
etry and material properties for a wide variety vided a priori). Third, one must have a way
of images. of quantifying what is meant by "most consis-

tent with the information sources." Here, we
use an objective function that is a linear com-hn contrast to our approach traditional uses bination of components, one for each informa-

of shading information assume that the albedo tion source, whose weights are determined on a

is constant across the entire surface, which is a t-by-oucet basishas a fn tin of a
majo liitaionwhe appiedto ealimaes. facet-by-facet basis as a function of the images.

Wejor limitation when applied to real images. Finally, one must have a computationally effec-
We overcome this limitation by improving upon tive means of finding a surface, given the initial

a method to deal with discontinuities in albedo
estimate, that is reasonably close to the best ofalluded to in the summary of [30, 31]. We coin- all possible surfaces according to the objective

pute the albedo at each facet using the nor- function.

mal to the facet, a light-source direction, and

the average of the intensities projected onto the Our combined objective function has three

facet from all images. Since we use the aver- components, two of which were mentioned

age of the projected intensities, this computed above: an intensity correlation component, and

albedo minimizes the mean squared error be- an albedo variation component. A third com-

tween the images of the mesh surface and the ponent is a measure of the smoothness of the

input images. The variation of this computed surface. The first two components are weighted

albedo across the surface is the actual informa- differently at each facet as a function of the im-

tion source used to recover the surface. For ex- age intensities projected onto the facet, while

ample, if the albedo of the real surface were the surface smoothness component has the same

indeed constant, as in traditional shape-from- weight everywhere, but is typically decreased as

shading problems, then the measured variation the iterations proceed.

in albedo will be zero for the correct mesh sur- Since the intensity correlation component de-

face, and we will have recovered both surface pends on the difference in intensity at a given

shape and albedo. The distinct advantage of point, it is most accurate when the images

this approach over the traditional one is that it are highly textured in the areas that the facet

can deal with surfaces whose albedo is not con- projects to. To see this, consider the case when
stant, but instead varies slowly over the surface. the images have constant intensity in the neigh-

borhood of the projected facet: the difference

in intensity will be a constant, independent of
In the following subsection, we describe how small variations in the facet's position or ori-

these two sources of information are combined entation. On the other hand, when the imagesg and used to reconstruct surfaces. are highly textured, small changes in the facet

U



can significantly change the value of this com- flectance properties from multiple images is to
ponent. Thus, we weight the intensity correla- deform a three-dimensional representation of
tion component most strongly for those facets in the surface so as to minimize an objective func-
which the projected image intensities are highly tion. The free variables of this objective func-
textured. tion are the coordinates of the vertices of the

Conversely, the albedo variation component mesh representing the surface, and the process
is most accurate when the intensities within a is started with an initial estimate of the surface.
facet vary slowly. This is because we are assum- For the experiments descrA:bed in this paper, we
ing that the albedo varies slowly enough across have derived this initial estimate by triangu-
the surface that a constant-albedo facet is a lating the smooth depth-map generated by the
good model for the surface. Since the facets are correlation-based stereo algorithm described in
planar, this should produce images whose inten- [19, 15]. Figure 1 illustrates the output of this
sities are constant within the projected facet. algorithm on a synthetic stereo pair.
Thus, we weight the albedo variation compo- Alternatively, we could have relied on more
nent most strongly when the projected intensi- sophisticated algorithms that can triangulate
ties within a facet vary slowly, noisy laser or stereo range-data to derive our

Since rapidly changing albedoes produce initial estimates [14, 18, 42]. All these meth-
highly textured image regions, our weighting ods tend to smooth the data and to interpolate
scheme, in effect, turns off the shading com- blindly in the absence of data so that their out-
ponent and turns on the stereo component in put needs to be refined by algorithms such as
such regions. Thus, it provides the shape from ours.
shading component with implicit boundary con- In this section, we describe more formally
ditions at the edge of regions of constant albedo. each part of our approach.

The surface smoothness component is re-
quired as a stabilizing term because neither of 4.1 Images and Camera Models
the above components is likely to be exactly cor-
rect, the surfaces are not exactly Lambertian, In this paper, we assume that images are
the camera positions are not exactly correct, monochrome, and that their camera models are
there is noise in the images, and so on. Cur- eown a priori. The set of grey-level images is
rently, we use the heuristic technique of starting denoted G = (91, g2,..., g,). A point in an
with a relatively large weight for the smoothness image is denoted u = (u, v), and the intensity

component, and decrease it as the iterations of point u in image gi is denoted gi(u). For non-

proceed. The theoretically optimal point at integer values of u we use bilinear interpolation

which the smoothness weight should no longer over the four points represented by the floor and

be decreased is still an open question, although ceiling of the coordinates of u.

a single, empirically determined, value has been The projection of an arbitrary point x -

used with great success across all of the images (z, y, z) in space into image gi is denoted mi(x).

presented in this paper when using all of the There are well-known methods for correcting

components. both geometric and radiometric errors in im-

In the following section, we describe the sur- ages, as surveyed in [4], pp. 68-77. Thus, we

face representation and optimization algorithm assume that all effects of lens distortion and the

in more detail. like have been taken care of in producing the in-
put images, so that the projection of a surface
into an image is well modeled by a perspectiveS4 Details of Surface Model projection. Thus, u = mi(x) can be written as:

and Optimization Proce-3dure
V A M Y

As discussed in the previous section, our ap- W z
proach to recovering surface shape and re-
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(b) d

Figure 1: (a,b) A synthetic stereo pair generated by texture-mapping a real image of the Martin-Marietta
ALV test-site onto a Digital Elevation Model (DEM). (c) The disparity map using a correlation-based
algorithm. The black areas indicate that the stereo algorithm could not find a match. Elsewhere, lighter
greys indicate higher elevations. (d) The same disparity map after smoothing and interpolation.

4U = U/W 4.3 Objective Function
V V/ W, The objective function C(S) that we use to re-

cover the surface is best described in two equa-

where Mi is a three by four projection matrix. tions. In the first equation,

1 4.2 Surface Representation C(S) = ADED(S• + CG(S), (1)

We represent a surface S by a hexagonally-
connected set of vertices V = (,(829 ... ) is decomposed into a linear combination of
called a mesh. The position of vertex vj is spec- two components. The first component, CD(S),
ified by its Cartesian coordinates (zj, yj, zj). is a measure of the deformation of the surface
Figure 2 shows such a mesh as a wire frame from a nominal shape, and is independent of the
and as a shaded solid surface. images. For this paper, the nominal shape is a

Each vertex in the interior of the surface has plane. Higher-order measures, such as deforma-

exactly six neighbors. The neighbors of vertex tion from a sphere, are also possible. This nom-

vi are consistently ordered in a clock-wise lash- inal shape represents the shape that the surface

ion. Vertices on the edge of a surface may have would take in the absence of any information

anywhere from two to five neighbors. from the images.

Neighboring vertices are further organized The second component,
into triangular planar surface elements called
facets, denoted F = (f1,12,...,f.,). The ver- EG(S) = ACCC(S)+ ASCS(S) (2)
tices of a facet are also ordered in a clock-wise
fashion. In this work, we require that the initial
estimate'Of the surface have facets whose sides depends on the images, and is the one that
are of equal length. The objective function de- drives the reconstruction process. It is further
scribed below tends to maintain this equality, decomposed into a linear combination of the two

but does not strictly enforce it. The representa- information sources described in the previous
tion can be extended in a straight-forward fash- section: a multi-image correlation component,
ion to support different surface resolutions by Cc(S), and a component that depends on the

sub-dividing facets (which we have done). How- shading of the surface, Cs(S).
ever, facets of a given resolution will still be re- These components, and their relative weights,g quired to have approximately equal sides. are described in .more detail below.
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Figure 2: The top row shows a hexagonal mesh as both a wireframe and a shaded surface. The bottom row
shows several images of a scene. In our approach, these images are projected onto the mesh using camera
models.
S4.3.1 Surface Deformation Component of vN,(j) and vN,(,+3), for any

Given the above, we can write a measure of
As the deformation (or the deviation of the mesh from a plane as fol-
smoothness) component is a measure of the de- lows:
viation of the mesh surface from some nominal
smooth shape. When the nominal shape is a
plane, we can approximate this as follows. f4 3 (2:i - Zk - zXk) 2 +

Consider a perfectly planar hexagonal mesh CD(S) = (21i- yk - yk,)2+
for which the distances between neighboring i= i (2zi - zk- z,)2

vertices are exactly equal. Recall that the mesh kf-N (j)
is defined so that the neighbors of a vertex vi are k'fN,(j+3)
ordered in a clock-wise fashion, and are denoted
vNi(j). If the hexagonal mesh was perfectly pla- Note that this term is also equivalent to
nar, then the third neighbor over from the jth the squared directional curvature of the sur-
neighbor, VNi(j+3), would lie on a straight line face when the sides have approximately equal
with vi and vN,(j). Given that the inter-vertex lengths [27]. Also, this term can accommo-
distances are equal, this implies that coordi- date multiple resolutions of facets by normaliz-

g nates of vi equal the average of the coordinates ing each term by the nominal inter-vertex spac-
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ing of the facets. visible in that image, otherwise, it is not. Let
vi(x) = I when point x is determined to be

4.3.2 Multi-Image Intensity Correlation visible in image gi by the method above, and
vi(x) = 0 otherwise. Then, the correct form for

The multi-image intensity correlation compo- the sum of squared differences in intensity at a
nent is the sum of squared differences in inten- point x is:
sity from all the images at a given sample-point
on a facet, summed over all sample-points, and
summed over all facets. This component is pre- (x) = E"•l vi (x) )
sented in stages in the remainder of this subsec- E x Vi(x)
tion. t-'h =v(x) (g,(mj(x)) -_ (x))2

First, we define the sample-points of a facet (x) =i

by taking advantage of the fact that all points "=1 Vi(x)

on a triangular facet are a convex combination Finally, summing a(x) over all sample-points
of its vertices. Thus, we can write the sample- and over all facets yields the multi-image inten-
points xk,, of facet fk as: sity correlation component:

Xk,l = A,,i Xk, +,A1, 2 Xk,2 + A,3 xk,3, 1 = 3,4,.. .n., n/(S) = no x)

where xk,l, Xk,2, and x&,3 are the coordinates of k=1 1=3

the vertices of facet f1, and A,,1 + A1, 2 + AO,3 = 1. where Ck is a number between 0 and 1 that
In the top half of Figure 3(a), we see an example weights the contribution from each facet differ-
of the sample points of a facet. ently, depending on the average degree of tex-

Next, we develop the sum of squared differ- turing within a facet (see Section 4.3.4).
ences in intensity from all images for a given When the original surface giving rise to the
point x. Recall that a point x in space is pro- images is sufficiently textured, this component
jected into a point u in image g, via the perspec- should be smallest when the surface S closely
tive transformation u = m,•x). Consequently, approximates the original surface. However,
the sum of squared differences in intensity from when the surface has constant, or nearly con-
all the images, v'(x), is: stant, albedo this component would be small

for many different surfaces. As an extreme ex-
1 '~ample of this ambiguity, consider a planar sur-3PO = I gi(mi(x)) face with constant albedo. This produces im-

ni i=f ages with constant intensity. Thus, this compo-
SI _ 2 nent will not be able to constrain the shape of

7'(x) -- •"i(i the surface, since the difference in intensity will
be zero for all surfaces.

Figure 3(a) illustrates the projection of a An example of using only the intensity-
sample-point of a facet onto several images. correlation and smoothness components on the

The above definition of oa(x) does not take synthetic stereo pair of Figure 1 is shown in Fig-
into account occlusions of the surface. To do ure 5. The top row of the figure depicts the
so, we use a "Facet-ID" image shown in Fig- initial surface estimate. Figures 5(a) and (b)
ure 4. It is generated by encoding the index are shaded images of the mesh. Figure 5(c) de-

Ii of each facet fi as a unique color, and pro- picts the error from ground-truth elevation for

jecting the surface into the image plane using a the left image, where black indicates zero error,
standard hidden-surface algorithm. Thus, when and white indicates an error corresponding to a
a sample-point from facet fk is projected into few pixels in disparity. Figure 5(d) depicts the
an image, the index k is compared to the in- squared difference in intensity between the left
dex stored in the Facet-I) image at that point. image and the right images warped using the

SIf they are the same, then the sample-point is disparity map. Note that the worst errors occur
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Figure 3: (a) Facets are sampled at regular intervals as illustrated here. We use the grey levels of the
projections of these sample points to compute the stereo score. (b) The albedo of each facet is estimated

using the facet normal •, the light source direction T and the average grey level of the projection of the
facet into the images.

I
4

(a) (b) (c)

F'igure 4: mustration of the projection of a mesh, and the "Facet-ID" image used to accomodate occlusions
during surface reconstruction. (a) A shaded image of a mesh. (b) A wire-frame representation of the mesh
(bold white lines) and the sample-points in each facet (interior white points). (c) The "Facet-ID" image,

wherein the color at a pixel is chosen to uniquely identify the visible facet at that point (shown here as a! rey-le img)

along the steep ridge of the terrain, where the 4.3.3 Shading
constant-depth assumption of correlation-based
stereo is most strongly violated. The shading component of the objective func-

tion is the sum, over all facets, of the difference
between the computed albedo of the facet and
the computed albedoes of all of its neighbors.

The bottom row of Figure 5 illustrates the re- The motivation for this component, and its pre-
suit of the optimization procedure, described in cise form, follow.
Section 4.4, using only the intensity-correlation Recall that the Lambertian reflectance model
and smoothness components. Note that the defines the intensity g at a point on a surface

overall error in both elevation and intensity is with a unit surface normal 9 as:
lower, and that the error is no longer concen-
trated along the ridge. As a result, the ridge is
clearly sharper in the shaded views. g = a(a + b . "7), (3)
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Figure 5: (a,b) Two shaded views of the mesh derived from the smoothed disparity map of Figure l(d). (c)
Deviations in altitude from the elevation data used to generate the synthetic pair. (d) Intensity error image,
created by warping the right image into the left image using the disparities corresponding to the elevations

of the mesh facets and computing the squared difference between these two images (e,f~g,h) Corresponding
images aftr stereo optimization. Note that the ridge now appears much sharper in the shaded views, and

I that the overall error is smaller and more evenly distributed.

where a is the albedo of the surface, a is the though some of these parameters could be in-
Smagnitude of the ambient fight, b is the ma- cluded in the optimization, as was done in [31].

nitude of a point light source, and "T is the The average intensity #k of a facet is com-
Sdirection of the point light source as depicted puted by scanning over all the Facet-11D images

in Figure 3(b). for index k, and taking the average of the inten-
Note that g is independent of the viewing di- sities at matching points in the corresponding

Srection. Consequently, if we were to image a images. This method provides an inexpensive
planar Lambertian facet from several points. of way of computing the average intensity while
view, its intensity would be the same for all pix- taking occlusions into account.

I els in the projection of the facet. Conversely, if
we were to measure the average intensity .qk of Now, if the original surface had exactly con-
all of the pixels within the projection of a facet stant albedo, and if our mesh surface were

Sfk, we could compute its albedo, ak, as follows: a good approximation to the original surface,
then the computed albedoes, should be approx-

ak = 9k .() imately the same across all facets. Thus, some
Ct (a+÷ bN. " (4 measure of the variation in computed albedoes

| would be a good measure of the correctness of
This assumes, of course, that the facet is well- the mesh surface. If the albedo varies slowly

Smodeled by a single albedo, and that the vari- across the surface, we propose that an appro-
ation in intensity is due only to noise. In this priate measure of this variation is the difference
paper, we assume that the ambient and direct between the computed albedo at the facet and

Sillumination (i. e., a, b, and LT) are given, al- the computed albedoes of all of its neighbors:

!.
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Thus, one needs to specify both the As, defining
74, the relative weights of the components, and the

Es(S) = E(I - c&) E (1 - ci)(ak - a0) 2, cks, defining the relative weights of the facets in
k=3 jEN(Mk) each of these components.

where NI(k) is the set of indices of the facets The A weights are defined as follows:

that are neighbors of facet f&, and ck and ci are
numbers between 0 and 1 that depend on the
degree of texturing within facets fk and fi. AD =

rAn example of using only the shading and 11 04D(5°) 0)

smoothness components is illustrated in Fig- AC = AI (6)
ure 6. Figure 6(a) shows a shaded view of Jl vt¢(so) II
the original surface, a hemisphere with constant
albedo. Figures 6(b) and (c) show shaded views AS =

of the initial surface estimate, which was de- II VEs((S)
rived by adding white noise to the vertex co-
ordinates of the original surface. Figures 6(d) where s the initial estimate of the surface,
and (e) are the shaded views of the result a- and the A's are user defined weights. Normal-
ter optimization, and Figure 6(f) is the albedo izing each component by the magnitude of its

map for the surface, i.e. the intensity in the im- initial gradient allows the components to have

age represents the albedo of the surface. Note roughly the same influence when the A's are

that the albedo and shape are well recovered ex_ equal. Thus, the user can more easily specify

cept near the edge of the hemisphere where the the relative contributions of each component in

image intensity varies rapidly across the image. an image-independent fashion. This normaliza-

This is because the approximation we use in the tion scheme was used with great success in (16],

derivatives of this component is that the mean and is analogous to standard constrained op-

intensity within a facet does not vary signifi- timization techniques in which the various con-

cantly in the neighborhood of a facet, which is straints are scaled so that their eigenvalues have

violated for facets that straddle the boundary. comparable magnitudes [34].

This does not hurt us when combining shading As mentioned earlier, the Ck weights are a

with the stereo component since, as explain in function of the degree of texturing in the in-
the following subsection, we turn off the shading tensities projected within a facet fk. A sim-

component in such areas. ple measure of the degree of texturing within a
facet is the variance in intensity of all the pixels

4.3.4 Combining the Components projecting onto the facet, denoted Uk(S) (us-
ing the Facet-ID image to accommodate occlu-

Recall that the objective function C(S) is a lin- sions). We have found that using the logarithm
ear combination of three components: of ok(S) yields the most stable results:

C(S) = ADICD(S) + ACCc(S) + ASss(S), ck = alog(1 + fk(S)) + b, (7)

where the last two components are themselves where a and b are normalizing factors chosen so

linear combinations of subcomponents com- that the smallest Ck is zero, and the largest is

puted on a per-facet basis: one.

I us n. 4.4 The Optimization Procedure
CC(S) = ,k , V(Xk,1) The purpose of the optimization procedure is to

k--i 1=3
o_, iteratively modify the surface S so as to mini-

Cs(S) = ,(1-ck) , (1 - cj)(ak- a,). mize C(S), given some initial estimate S°, andgkni jENI(k) some value for the weights A', A' , and A',
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Figure 6: (a) Shade image of a hemisphere of contant, alhedo. (b,c) Shade views of randomized hemisphere
used an a starting point. (d,e) Shaded views of the same hemisphere after optimization using only the shading
component of the objective function. (f) The recovered albedo map.

(where A's + )'5 + A•) = 1) defined in Equa- vature in the surface. In this paper we take the
tion 7. Ideally, one would like to use as small a initial value of A•> to be 0.5. Given the initial
value of the deformation weight AD) as possible estimate So, a local minimum of this approxi-
so as to minimize the bias introduced by this mate objective function is found using a stan-
term. However, in practice, 41 serves a dual dard optimization procedure. Then, Aý is de-
purpose. First, since the surface deformation creased slightly, and the optimization procedure
term is a quadratic function of the vertex co- is applied again, starting at the local mIn'mum
ordinates, it "convexities" the energy landscape found for the previous approximation. This cy-

It

and improves the convergence properties of the dle is repeated until AD is decreased to the de-
optimization procedure. Second, as will be dis- sired value. Finally we "turn on" the shading
cussed in the results section, in the absence of term, compute the ck weights and reoptimize.
a smoothing term, the objective function may In all examples shown in the result section we
overfit the data and wrinkle the surface exces- use Ac = A'• = .4 and A' = .2.
sively. Furthermore, the ck weights of Equations
6 and F are computed for the initial position of The stereo component effectively uses only
the mesh and are only meaningful when it is first order information about the surface (i.e.,
reotively mp ose to the actual surface. the position of the vertices), whereas shading

uses second order information about the sur-i Consequently, we use an optimization method face (i.e., its surface normals). Thus, by op-

that is inspired by the heuristic techniqu t te stereo component first, we effec-
tknown as a ontinuation method [43, 28, sre 30]. tively compute the zeproedur perties of the
p oWe first "turn off" the shading term by setting surface and set up boundary conditions that the
ter (equation 7) to 0 and set of to a value that shading component can then use to compute the
is large enough to sufficiently convexify the en- first order properties of the surface in texture-
ergy landscape but small enough to allow cur- less regions. In section 5, we will show that this



leads to a significant improvement over using mal, which can be easily derived analytically,
the stereo component alone, and from the derivative of the mean grey-level

When dealing with surfaces for which motion in the facets. In this work, the shading term is
in one direction leads to more dramatic changes used mainly in the fairly uniform areas where
that motions in others, as is typically the cue the latter derivative is assumed to be small and
with the z direction in Digital Elevation Mod- therefore neglected.
els (DEMs), we have found that the following
heuristic to be useful. We first fix the z and B
coordinates of vertices and adjust z alone. Once 5 Behavior of the Objective
the surface has been optimized, we the allow all Function and Results
of the coordinates to vary simultaneously.

The optimization procedure we use at ev- In previous sections, we have shown results of
ery stage is a standard conjugate-gradient de- the optimization procedure using only one or
scent procedure called FRPRMN (from [38]) in the other of the image components of the objec-
conjunction with the a simple line search al- tive function. In this section, we first illustrate
gorithm. The conjugate-gradient procedure re- the behavior of the complete objective function
quires three inputs: 1) a function that returns using synthetic data. We then show that the
the value of the objective function for any S; 2) same behavior can be observed with real data,
a function that returns the gradient of C(S), allowing us to generate accurate 3-D reconstruc-
i.e., a vector whose elements are the partial tions of real surfaces from multiple images.
derivatives of C(() with respect to the vertex
coordinates, evaluated at S; and 3) an initial 5.1 Synthetic Data
estimate 8S.

The gradient of 6(S) is conceptually straight- To demonstrate the properties of the objective
forward, but is fairly complicated to derive man- function of Equation 1 and the influence of the
ually. We have used the Maple I mathematical coefficients defined in Equation 4, we use as in-
package to derive some of the terms. We sum- put the five synthetic images of a shaded hemi-
marize the calculation of the derivatives below sphere with variable albedo shown at the bot-

in general terms. tom of Figure 7, both with and without the ad-

The derivatives of the stereo term are lin- dition of white noise. Each column of the figure
ear combinations of image intensity derivatives illustrates the steps used in the creation of the
and of derivatives of the 3-D projections of image at the bottom of the column. We be-

points onto the images. Since we use bilinear- gin with a mesh and an albedo map, shown in
interpolation of image values, the first deriva- the top row. Then, for each view, two images
tives of image intensity are linear combinations are produced. The first image (second row of

of the image intensities in the immediate neigh- the figure) is the albedo map texture-mapped
borhood of the projection. Since sample-points onto the mesh from the final image's point of
are linear combinations in projective space of view. The second image (third row of the fig-

the mesh vertices, their projections are ratios ure) is a shaded view of the mesh, using a con-
of linear combinations of the projections of stant albedo equal to one. The final image is the
the vertices, which themselves depend linrearly point-by-point product of these two images be-

on the vertex coordinates. Consequently, the cause, by Equation 3, the imaged intensity of a
derivatives of these projections are ratios of lin- Lambertian surface is the product of the albedo
ear combinations of the vertex coordinates and (first image) and the inner product of the light

squares of linear combinations of the vertex co- source and the surface normal (second image).
ordinates. Figure 8 depicts graphically the result of our

Similarly, the derivatives of the shading term experiments. In each experiment we random-

depend of the derivatives of the surface nor- ized the mesh by adding random numbers to
the coordinates of the mesh vertices, and addedg'Trademark, Waterloo Maple Software different amounts of noise to the input images.
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Figure 7: The making of synthetic images of a shaded hemisphere with variable albedo that conforms to
our Lambertian model.

We then used our optimization procedure to es- there is a significant amount of self occlusion.
timate the true hemispherical shape and true Finally, the third column is for experiments us-
albedo map. More precisely, starting from our ing all five images. In this particular set of ex-
randomized initial estimate, we first use stereo periments, we fixed the boundaries of the mesh
alone and progressively decrease the value of and allowed only the z coordinates of the ver-
the A' parameter of Equation 7 from 0.5 to tices to vary. However, the same overall be-
0. We then turn on the shading term by set- haviors can be observed without the boundary
ting both AD and A' to 0.4, compute the cks conditions.
of Equation 7 and optimize the full objective
function. To show the stability of the process, The first row from the top of Figure 8 is

we then recompute the cks for the optimized a graph of the average squared error in eleva-
mesh and perform a second optimization using tion (the abscissa) versus decreasing A' (the
the updated values, ordinate). To the left of the dotted vertical

line, only the intensity correlation component is
The first column of Figure 8 is for experi- used. To the right, both the intensity correla-

ments using only the first, second, and third im- tion and shading components are used. The dif-
ages from Figure 7, where there is little self oc- ferent curves are for different amounts of noise
clusion. The second column is for experiments in the input images. The bottom curve is wheng using the first, fourth, and fifth images, where there is no noise (other than quantization error),
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Figure 8: Graphs of the er ans ad objective function components while fitting a surface model to the
synthetic shaded hemisphere images of Figure 7 (These graphs are explained in detail in the text.). (a,b,c)
Average error in recovered elevation. (d,e,f) Average error in recovered albedo. (g,h,i) Stereo component of
the energy. (j,k,l) Shading component of the energy.

I the middle curve is for a noise variance of 4% Cs(S).

of the image dynamic range, and the top curve note that as (ot cres t aloe
is for a noise variance of 8%. The short verti- he a t, albedoderror and tereo one
cal lines along the curves indicated the standard is used (i.e., as the ordinate is traversed right-devitio oftheaveageerro ovr te 2 exer- wards to the dotted vertical line), the average
deitoIfteaeaeero vrte2 xe- elevation error decreases when there is no noise3iments performed to derive each curve, in the input image (bottom curve), as does

The second row of Figure 8 is a graph of the the average albedo error and the two compo-
I average error in computed albedo. The third nents of the objective function. However, when

row is the average value of the intensity corre- the images are noisy, the elevation error (first
lation component, &c(S), and the fourth row row) stops decreasing and may even begin to3 is the average value of the shading component, increase as we start fitting to the grey-level

U



noise, even though the value of the intensity There is another important point to note
correlation component (third row) continues to about these results. The elevation errors in the
decrease (as it must). Furthermore, both the second row, i.e those generated using images 1,
albedo error (second row) and the shading corn- 4, and 5 with a lot of self occlusion are very close
ponent (fourth row) also begin to increase when to those of the first row, i.e. those generated us-
the elevation error does. This is natural since ing images 1, 2, and 3 with little self occlusion,
for smaller values of A' the surface becomes while those in the final row (using all five im-
rougher and its normals less well-behaved. As ages) are significantly better. Furthermore, in
a result, the estimated albedoes of Equation 4 this particular case, the results for images 1,4
become less reliable and noisier. and 5 are even slightly better than those for

In other words, an increase in the shading images 1,2 and 3 in the presence of noise be-1 component provides us with a warning that we cause the former correspond to larger baselines.
are starting to overfit the data. This is a valu- In other words, having the same number of im-
able behavior in itself. Furthermore, by turning ages, but with significant self-occlusions, does3 on the shading component of our objective func- not hurt our procedure. However, adding new
tion (those parts of the graphs that are to the images that contain significant self-occlusions
right of the vertical dotted line), we can bring actually improves the results.3 down both the error in albedo and the value We now turn to real images and show that
of albedo component with at worst of modest the same properties can also be observed there.
increase in the value of the stereo component,
resulting in an overall reduction of the elevation 5.2 Real Images
error. Even when there is nothing but quanti-
zation noise in the image, the addition of the In Figure 9 we show the result of running the3 shading component can make a small, but still stereo component of our objective function on a
noticeable difference. The reasons for this are real stereo pair corresponding to the same site
twofold: as the synthetic images of Figure 1. Note that3 the radiometry of the left and right images are

1. The shading component averages over actually slightly different. We correct for this
whole facets and is therefore less sensitive by first band-passing each image by taking the
to uncorrelated noise. difference between the image and its gaussian

convolution. This is approximately equivalent
2. The shading component uses absolute in- to replacing the simple correlation that our ob-

tensity values whereas the stereo compo- jective function uses by a normalized correla-
nent uses intensity differences. Thus, in the tion, but is computationally more efficient. We
presence of noise in textureless areas, the then applied the optimization using exactly the3 signal-to-noise ratio for the absolute values same schedule and parameters as in the syn-
(used by the shading component) is larger thetic case, with the exception that As is not
than for the differences (used by the stereo reduced quite as much for the real images as
component), thereby making the shading for the synthetic ones in the first step of the
term more robust. procedure. Note that the recovered ridge is

even sharper than in the synthetic case. This
However, in our experience, the shading term is because the Digital Elevation Model used to

can only be used reliably when the surface is rel- produce the synthetic right image was actually
atively close to the correct answer. This is not a slightly smoothed version of the terrain, in

- surprising since the stereo deals directly with el- which one side of the ridge is an almost verti-
evations whereas shading deals with derivatives cal cliff. Thus, even though we do not currently
of elevation. Consequently we have chosen the have ground truth for the real case, the sharp-
optimization "schedule" described above where ness of the recovered cliff, which matches what
we first optimize using stereo alone and turn on is seen using a stereoscope, leads us to believeg shading only later. that the algorithm has performed well.
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(a) (b (c)

I Figure 9: (a,b) A stereo pair of real images of the Martin-Marietta ALV test-site used in Figure 1. (c)

Intensity error image computed using the method described in Figure 1(c) (d,e) Shaded views of the mash
I after optimization. (f) Intensity error image after optimization. Note that the ridge is now very sharp, This

corresponds accurately to the almost vertical cliff that can be seen when viewing the stereo pair with a
stereoscope.

IIn Figure 10 we show three triplets of images face eventually'starts to wrinkle, without appar-

of faces. They have been produced using the IN- ent improvement in accuracy. The third triplet
IRIA three camera system [13] that provides us pssan even more difficult problem: there are

with the 3 by 4 projection matrices we need to strong specularities on both the forehead and
perform our computations. In this case it is es- the nose that strongly violate our Lambertian

Isential to have more than two images to be able model. Because there are veyfew other points

to reconstruct both sides of the face because of that can be matched on the nose, the algorithm
self-occlusions. For each triplet, we have com- latches on to these specularities and yields a

-I pue dsart to 1 eslt

pueddipait maps corresponding toimages 1 poorreut
and 2 and to images 1 and 3 and combined them In the bottom row of Figures 11, 12, and
to produce the depth maps shown in the right- 13, we show our final results obtained by turn-
motclm ftefigure using tealgorithms ing on the shading term and reoptimizing the

described in [19, 15]. meshes. For these images we did not know a-
The depth maps have then been smoothed priori the fight source-direction, we therefore es-

and triangulated to produce the initial surfaces timated it by choosing the direction that rain-

shown in the upper left corner of Figures 11, imizes the shading component of the objective
I12, and 13. In the first row of these three fig- function given the surface optimized using only

ures, we show the result of the optimization the stereo component. In all three images, the
using stereo alone as we progressively decrease main features of the faces, nose, mouth and

Ithe smocthness constraint and allow all three eyes have been correctly recovered. The im-

vertex coordinates to be adjusted. Note that provement is particularly striking in the case of

(IU~ ~ ~o Figue 9:rs twob Ateripeos paigroeliaes ofan 1) the M ft-arietaAVessiesd in Figure 13.Teshdn (c)monn

wrcovrresonsacratl ote aldmost vertaicl cliff theswat canble see wchienviewn thes streoul peausr with ase
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Figure 10: Triplets of face images and corresponding disparity maps (courtesy of INRIA).

the monocular information around the specular- has been outweighed by the surrounding infor-
ities. The stereo component cannot take advan- mation. A more principled approach to solving
tage of the information around the specularities this problem would be to explicitly include a
because very few points are visible in at least speculaxity term in our shading model.
two images simultaneously, and because there is The graphs of Figure 14 depict the behav-

tlittle texture. Of course, the effect of the spec- ior of the stereo and shading components of the
ularities has not completely disappeared (there objective function for the three triplets. Thegis indeed still a small artifact on the nose) but four values of the scores to the left of the thick

I
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3 Figure 11: Results for the first triplet of Figure 10. (a) Shaded view of the mesh generated by smoothing and
triangulating the computed disparity map. We use it as the starting condition for our optimization procedure.
(b,c,d) The mesh after optimization using only the stereo term, with progressively less smoothing. (e,fg)
Several views of the mesh after optimization using both stereo and shading. (h) The recovered albedo map.

dotted line, St0 to $t3, correspond to the re- occlusions while merging information from sev-
suits shown in the top row of Figures 11, 12, eral viewpoints, thereby allowing us to elimi-
and 13. The fifth value, St + Sh, corresponds nate blindspots and making the reconstruction
to the final results when shading is turned on. more robust where more than one view is avail-
These values have been scaled so that Sto is able. The reconstruction process relies on both
equal to one for all triplets. As in the synthetic monocular shading cues and stereoscopic cues.
case, when using stereo alone, the stereo corn- We use these cues to drive an optimization pro-
ponent always improves, but as the recovered cedure that takes advantage of their respective
surface becomes rougher the shading term de- strengths while eliminating some of their weak-

grades dramatically. However, when we turn on nesses.
the shading component, the overall results im-
prove significantly, even though the stereo corn-! pcfcly troinomto svr op degrades slightly, bust in textured regions but potentially unre-ponent dliable elsewhere. We therefore use it mainly in

such areas by weighting the stereo component
6 Summary and Conclusion most strongly for facets of the triangulation that

project into textured image areas. The compo-
In this paper we have presented a surface recon- nent compares the grey-levels of the points in
struction method that uses an object-centered all of the images for which the projection of a
representation (a triangulated mesh) to recover given point on the surface is visible, as deter-
geometry and reflectance properties from mul- mined using a hidden-surface algorithm. Thisg tiple images. It allows us to handle self- comparison is done for a uniform sampling of
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3 Figure 11: Results for the first triplet of Figure 10. (a) Shaded view of the mesh generated by smoothing and
triangulating the computed disparity map. We use it as the starting condition for our optimization procedure.
(b,c,d) The mesh after optimization using only the stereo term, with progressively less smoothing. (e,fg)
Several views of the mesh after optimization -.sing both stereo and shading. (h) The recovered albedo map.

dotted line, St0 to St3 , correspond to the re- occlusions while merging information from sev-
suits shown in the top row of Figures 11, 12, eral viewpoints, thereby allowing us to elimi-
and 13. The fifth value, St + Sh, corresponds nate blindspots and making the reconstruction
to the final results when shading is turned on. more robust where more than one view is avail-
These values have been scaled so that Sto is able. The reconstruction process relies on both
equal to one for all triplets. As in the synthetic monocular shading cues and stereoscopic cues.
case, when using stereo alone, the stereo com- We use these cues to drive an optimization pro-
ponent always improves, but as the recovered cedure that takes advantage of their respective
surface becomes rougher the shading term de- strengths while eliminating some of their weak-
grades dramatically. However, when we turn on nesses.
the shading component, the overall results im-
prove significantly, even though the stereo corn- Specifically, stereo information is very ro-
ponent degrades slightly, bust in textured regions but potentially unre-

liable elsewhere. We therefore use it mainly in
such areas by weighting the stereo component

6 Summary and Conclusion most strongly for facets of the triangulation that
project into textured image areas. The compo-

In this paper we have presented a surface recon- nent compares the grey-levels of the points in
struction method that uses an object-centered all of the images for which the projection of a
representation (a triangulated mesh) to recover given point on the surface is visible, as deter-
geometry and reflectance properties from mul- mined using a hidden-surface algorithm. This
tiple images. It allows us to handle self- comparison is done for a uniform sampling of

3
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I Figure 12: Results for the second triplet of Figure 10 presented in the same fashion as in Figure 11.

Ithe surface. This method allows us to deal with mented to include specuiarities, shadows and
arbitrarily slanted regions and to discount oc- self-shadows. It can also support more complex
cluded areas of the surface. topologies, multiple resolutions and the shrink-

IOn the other hand, shading information is ing or growing of the surface of interest, though
mostly helpful in textureless areas. Thus, we in this paper we concentrated on a better under-
weight the shading component most strongly for standing of the behavior of the objective func-

I facets that project into such areas. The corn- tion. These extensions will be the subject of

ponent uses a new method for utilizing shad- future work.
ing information that does not need the tra-Iditional assumption of constant albedo. In-

stead, it attempts to minimize the variation in

albedo across the surface, and can therefore deal We wish to thank Hervi Matthieu and Olivier

I eog h aepoiedu ihtefc mge

3with both onstant albedo surfaces and surfaces Fi ure 10 hame faohion as in fige.

whose albedo varies slowly. However, it does re- and corresponding calibration data that appear inquire the boundary conditions that are provided this paper that have proved extremely valuable toI tri ste d regions our research effort. We would also like to apologize

clyuded atreasof thesufor aeo. tplgemlil eouin n h hik

WO he developed a weighting scheme that to the members of the INrIA ROBOTVIS project
mallows our system to use each source of inform,- whose faces we have mercilessly deformed during the
tion where it is most appropriate. As a result, development of the algorithms discussed above.
for the large class of surfaces that roughly sat-iisfy the Lambertian model, it performs signifi- References
cantly better than if it were using either source
of information alone. [1f A. L. Abbot and N. Ahuja. Active surface
whOur surface model can be naturally aug- reconstruction by integrating focus, vergence,
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Figure 13: Results for the third triplet of Figure 10 presented in the same fashion as in Figure 11.

, .o .............. ............... T ........... .. ................ " ............... ... .............. T.......T ; :
"i.C. . ........... ............................... 4.0.7 ..... N2. .... ..... ..

...........
,.5 ..... ....... .- ... ,,

Figure 14: Values of the stereo (a) and shading (b) components of the objective function for the face images.
The y axis represents the value of the components and the x axis the various stages of the optimization.
From left to right, we first use only stereo and decrease the smoothness and, to t he right of the thick dotted
line, we turn on the shading term. Each curve is labeled with the number of responding image triplet
and all values have been scaled so that the initial ones are equal to 1.0.
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